ﻻ يوجد ملخص باللغة العربية
A set $cal P$ of $n$ points in $R^d$ is separated if all distances of distinct points are at least~$1$. Then we may ask how many of these distances, with multiplicity, lie in an interval $[t, t + 1]$. The authors and J. Spencer proved that the maximum is $(n^2/2)(1 - 1/d) + O(1)$. The authors showed that for $d = 2$ and $cal P$ separated, the maximal number of distances, with multiplicity, in the union of $k$ unit intervals is $(n^2/2)$ $(1 - 1/(k + 1) + o(1))$. (In these papers the unit intervals could be replaced by intervals of length $text{const}_dcdot n^{1/d}$.) In this paper we show that for $k = 2$, and for any $n$, this maximal number is $(n^2/2)(1 - 1/m_{d - 1} + o(1))$, where $m_{d - 1}$ is the maximal size of a two-distance set in $R^{d - 1}$. (The value of $m_{d - 1}$ is known for $d - 1 leq 8$, and for each $d$ it lies in $left[left({datop 2}right), left({d + 1atop 2}right)right]$. For $d eq 4,5$ we can replace unit intervals by intervals of length $text{const}_d cdot n^{1/d}$, and the maximum is the respective Turan number, for $n geq n(d)$.) We also investigate a variant of this question, namely with $k$ intervals of the form $[t, t(1 + varepsilon)]$, for $varepsilon < varepsilon (d, k)$, and for $n > n(d, k)$. Here the maximal number of distances, with multiplicity, in the union of $k$ such intervals is the Turan number $T(n, (d + 1)^k + 1)$. Several of these results were announced earlier by Makai-Pach-Spencer.
High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to spherical and hyperbolic planes. If in any o
Let $Dgeq 2$, $Ssubset mathbb R^D$ be finite and let $phi:Sto mathbb R^D$ with $phi$ a small distortion on $S$. We solve the Whitney extension-interpolation-alignment problem of how to understand when $phi$ can be extended to a function $Phi:mathbb R
The $q$-ary block codes with two distances $d$ and $d+1$ are considered. Several constructions of such codes are given, as in the linear case all codes can be obtained by a simple modification of linear equidistant codes. Upper bounds for the maximum
In this paper, we study the following problem: Let $Dgeq 2$ and let $Esubset mathbb R^D$ be finite satisfying certain conditions. Suppose that we are given a map $phi:Eto mathbb R^D$ with $phi$ a small distortion on $E$. How can one decide whether $p
We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V=9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry