ﻻ يوجد ملخص باللغة العربية
High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to spherical and hyperbolic planes. If in any of these planes, or in ${Bbb R}^2$, there is a pair of closed convex sets with interior points, and the intersections of any congruent copies of these sets are centrally symmetric, then, under some mild hypotheses, our sets are congruent circles, or, for ${Bbb R}^2$, two parallel strips. We prove the analogue of this statement, for $S^d$, ${Bbb R}^d$, $H^d$, if we suppose $C^2_+$: again, our sets are congruent balls. In $S^2$, ${Bbb R}^2$ and $H^2$ we investigate a variant of this question: supposing that the numbers of connected components of the boundaries of both sets are finite, we exactly describe all pairs of such closed convex sets, with interior points, whose any congruent copies have an intersection with axial symmetry (there are 1, 5 or 9 cases, respectively).
In this paper, we study the following problem: Let $Dgeq 2$ and let $Esubset mathbb R^D$ be finite satisfying certain conditions. Suppose that we are given a map $phi:Eto mathbb R^D$ with $phi$ a small distortion on $E$. How can one decide whether $p
G. Fejes Toth posed the following problem: Determine the infimum of the densities of the lattices of closed balls in $bR^n$ such that each affine $k$-subspace $(0 le k le n-1)$ of $bR^n$ intersects some ball of the lattice. We give a lower estimate f
Let $Dgeq 2$, $Ssubset mathbb R^D$ be finite and let $phi:Sto mathbb R^D$ with $phi$ a small distortion on $S$. We solve the Whitney extension-interpolation-alignment problem of how to understand when $phi$ can be extended to a function $Phi:mathbb R
A set $cal P$ of $n$ points in $R^d$ is separated if all distances of distinct points are at least~$1$. Then we may ask how many of these distances, with multiplicity, lie in an interval $[t, t + 1]$. The authors and J. Spencer proved that the maximu
Let $Omega$ be a bounded closed convex set in ${mathbb R}^d$ with non-empty interior, and let ${cal C}_r(Omega)$ be the class of convex functions on $Omega$ with $L^r$-norm bounded by $1$. We obtain sharp estimates of the $epsilon$-entropy of ${cal C