ﻻ يوجد ملخص باللغة العربية
We study the problem of determining the capacity of the binary perceptron for two variants of the problem where the corresponding constraint is symmetric. We call these variants the rectangle-binary-perceptron (RPB) and the $u-$function-binary-perceptron (UBP). We show that, unlike for the usual step-function-binary-perceptron, the critical capacity in these symmetric cases is given by the annealed computation in a large region of parameter space (for all rectangular constraints and for narrow enough $u-$function constraints, $K<K^*$). We prove this fact (under two natural assumptions) using the first and second moment methods. We further use the second moment method to conjecture that solutions of the symmetric binary perceptrons are organized in a so-called frozen-1RSB structure, without using the replica method. We then use the replica method to estimate the capacity threshold for the UBP case when the $u-$function is wide $K>K^*$. We conclude that full-step-replica-symmetry breaking would have to be evaluated in order to obtain the exact capacity in this case.
Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known as highly relevant, in topics rang
The Hopfield model is a pioneering neural network model with associative memory retrieval. The analytical solution of the model in mean field limit revealed that memories can be retrieved without any error up to a finite storage capacity of $O(N)$, w
The optimal capacity of graded-response perceptrons storing biased and spatially correlated patterns with non-monotonic input-output relations is studied. It is shown that only the structure of the output patterns is important for the overall performance of the perceptrons.
Within a Kuhn-Tucker cavity method introduced in a former paper, we study optimal stability learning for situations, where in the replica formalism the replica symmetry may be broken, namely (i) the case of a simple perceptron above the critical lo
We study a class of Markov chains that describe reversible stochastic dynamics of a large class of disordered mean field models at low temperatures. Our main purpose is to give a precise relation between the metastable time scales in the problem to t