ﻻ يوجد ملخص باللغة العربية
The Hopfield model is a pioneering neural network model with associative memory retrieval. The analytical solution of the model in mean field limit revealed that memories can be retrieved without any error up to a finite storage capacity of $O(N)$, where $N$ is the system size. Beyond the threshold, they are completely lost. Since the introduction of the Hopfield model, the theory of neural networks has been further developed toward realistic neural networks using analog neurons, spiking neurons, etc. Nevertheless, those advances are based on fully connected networks, which are inconsistent with recent experimental discovery that the number of connections of each neuron seems to be heterogeneous, following a heavy-tailed distribution. Motivated by this observation, we consider the Hopfield model on scale-free networks and obtain a different pattern of associative memory retrieval from that obtained on the fully connected network: the storage capacity becomes tremendously enhanced but with some error in the memory retrieval, which appears as the heterogeneity of the connections is increased. Moreover, the error rates are also obtained on several real neural networks and are indeed similar to that on scale-free model networks.
We propose a new framework to understand how quantum effects may impact on the dynamics of neural networks. We implement the dynamics of neural networks in terms of Markovian open quantum systems, which allows us to treat thermal and quantum coherent
We study the problem of determining the capacity of the binary perceptron for two variants of the problem where the corresponding constraint is symmetric. We call these variants the rectangle-binary-perceptron (RPB) and the $u-$function-binary-percep
Macroscopic spin ensembles possess brain-like features such as non-linearity, plasticity, stochasticity, selfoscillations, and memory effects, and therefore offer opportunities for neuromorphic computing by spintronics devices. Here we propose a phys
We investigate analytically and numerically the critical line in undirected random Boolean networks with arbitrary degree distributions, including scale-free topology of connections $P(k)sim k^{-gamma}$. We show that in infinite scale-free networks t
Scale-free networks with topology-dependent interactions are studied. It is shown that the universality classes of critical behavior, which conventionally depend only on topology, can also be explored by tuning the interactions. A mapping, $gamma = (