ﻻ يوجد ملخص باللغة العربية
We study a class of Markov chains that describe reversible stochastic dynamics of a large class of disordered mean field models at low temperatures. Our main purpose is to give a precise relation between the metastable time scales in the problem to the properties of the rate functions of the corresponding Gibbs measures. We derive the analog of the Wentzell-Freidlin theory in this case, showing that any transition can be decomposed, with probability exponentially close to one, into a deterministic sequence of ``admissible transitions. For these admissible transitions we give upper and lower bounds on the expected transition times that differ only by a constant. The distribution rescaled transition times are shown to converge to the exponential distribution. We exemplify our results in the context of the random field Curie-Weiss model.
We generalize the strategy, we recently introduced to prove the existence of the thermodynamic limit for the Sherrington-Kirkpatrick and p-spin models, to a wider class of mean field spin glass systems, including models with multi-component and non-I
We apply the Kovacs experimental protocol to classical and quantum p-spin models. We show that these models have memory effects as those observed experimentally in super-cooled polymer melts. We discuss our results in connection to other classical mo
We consider the complexity of random ferromagnetic landscapes on the hypercube ${pm 1}^N$ given by Ising models on the complete graph with i.i.d. non-negative edge-weights. This includes, in particular, the case of Bernoulli disorder corresponding to
Approximating marginals of a graphical model is one of the fundamental problems in the theory of networks. In a recent paper a method was shown to construct a variational free energy such that the linear response estimates, and maximum entropy estima
We study a recently introduced and exactly solvable mean-field model for the density of vibrational states $mathcal{D}(omega)$ of a structurally disordered system. The model is formulated as a collection of disordered anharmonic oscillators, with ran