ﻻ يوجد ملخص باللغة العربية
Mode-division multiplexing (MDM) is becoming an enabling technique for large-capacity data communications via encoding the information on orthogonal guiding modes. However, the on-chip routing of a multimode waveguide occupies too large chip area due to the constraints on inter-mode cross talk and mode leakage. Very recently, many efforts have been made to shrink the footprint of individual element like bending and crossing, but the devices still occupy >10x10 um2 footprint for three-mode multiplexed signals and the high-speed signal transmission has not been demonstrated yet. In this work, we demonstrate the first MDM circuits based on digitized meta-structures which have extremely compact footprints. The radius for a three-mode bending is only 3.9 {mu}m and the footprint of a crossing is only 8x8um2. The 3x100 Gbit/s mode-multiplexed signals are arbitrarily routed through the circuits consists of many sharp bends and compact crossing with a bit error rate under forward error correction limit. This work is a significant step towards the large-scale and dense integration of MDM photonic integrated circuits.
Integration of superconducting nanowire single photon detectors and quantum sources with photonic waveguides is crucial for realizing advanced quantum integrated circuits. However, scalability is hindered by stringent requirements on high performance
In integrated photonics, specific wavelengths are preferred such as 1550 nm due to low-loss transmission and the availability of optical gain in this spectral region. For chip-based photodetectors, layered two-dimensional (2D) materials bear scientif
A novel technique is presented for realising programmable silicon photonic circuits. Once the proposed photonic circuit is programmed, its routing is retained without the need for additional power consumption. This technology enables a uniform multi-
Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion and frequency comb generation. For practical applications,
Valley pseudospin, a new degree of freedom in photonic lattices, provides an intriguing way to manipulate photons and enhance the robustness of optical networks. Here we experimentally demonstrated topological waveguiding, refracting, resonating, and