ﻻ يوجد ملخص باللغة العربية
Integration of superconducting nanowire single photon detectors and quantum sources with photonic waveguides is crucial for realizing advanced quantum integrated circuits. However, scalability is hindered by stringent requirements on high performance detectors. Here we overcome the yield limitation by controlled coupling of photonic channels to pre-selected detectors based on measuring critical current, timing resolution, and detection efficiency. As a proof of concept of our approach, we demonstrate a hybrid on-chip full-transceiver consisting of a deterministically integrated detector coupled to a selected nanowire quantum dot through a filtering circuit made of a silicon nitride waveguide and a ring resonator filter, delivering 100 dB suppression of the excitation laser. In addition, we perform extensive testing of the detectors before and after integration in the photonic circuit and show that the high performance of the superconducting nanowire detectors, including timing jitter down to 23 $pm$ 3 ps, is maintained. Our approach is fully compatible with wafer level automated testing in a cleanroom environment.
Generating entangled graph states of qubits requires high entanglement rates, with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon col
Valley pseudospin, a new degree of freedom in photonic lattices, provides an intriguing way to manipulate photons and enhance the robustness of optical networks. Here we experimentally demonstrated topological waveguiding, refracting, resonating, and
Thin-film lithium niobate (LN) photonic integrated circuits (PICs) could enable ultrahigh performance in electro-optic and nonlinear optical devices. To date, realizations have been limited to chip-scale proof-of-concepts. Here we demonstrate monolit
Mode-division multiplexing (MDM) is becoming an enabling technique for large-capacity data communications via encoding the information on orthogonal guiding modes. However, the on-chip routing of a multimode waveguide occupies too large chip area due
In integrated photonics, specific wavelengths are preferred such as 1550 nm due to low-loss transmission and the availability of optical gain in this spectral region. For chip-based photodetectors, layered two-dimensional (2D) materials bear scientif