ﻻ يوجد ملخص باللغة العربية
A novel technique is presented for realising programmable silicon photonic circuits. Once the proposed photonic circuit is programmed, its routing is retained without the need for additional power consumption. This technology enables a uniform multi-purpose design of photonic chips for a range of different applications and performance requirements, as it can be programmed for each specific application after chip fabrication. Therefore the cost per chip can be dramatically reduced because of the increase in production volume, and rapid prototyping of new photonic circuits is enabled. Essential building blocks for programmable circuits, erasable directional couplers (DCs) were designed and fabricated, utilising ion implanted waveguides. We demonstrate permanent switching between the drop port and through port of the DCs using a localised post-fabrication laser annealing process. Proof-of-principle demonstrators in the form of generic 1X4 and 2X2 programmable switching circuits were then fabricated and subsequently programmed, to define their function.
We experimentally demonstrate an all-optical programmable thresholder on a silicon photonic circuit. By exploiting the nonlinearities in a resonator-enhanced Mach-Zehnder interferometer (MZI), the proposed optical thresholder can discriminate two opt
In integrated photonics, specific wavelengths are preferred such as 1550 nm due to low-loss transmission and the availability of optical gain in this spectral region. For chip-based photodetectors, layered two-dimensional (2D) materials bear scientif
Low-loss photonic integrated circuits (PIC) and microresonators have enabled novel applications ranging from narrow-linewidth lasers, microwave photonics, to chip-scale optical frequency combs and quantum frequency conversion. To translate these resu
We review some of the basic principles, fundamentals, technologies, architectures and recent advances leading to thefor the implementation of Field Programmable Photonic Field Arrays (FPPGAs).
A multitude of large-scale silicon photonic systems based on ring resonators have been envisioned for applications ranging from biomedical sensing to quantum computing and machine learning. Yet, due to the lack of a scalable solution for controlling