ﻻ يوجد ملخص باللغة العربية
Very often, models in biology, chemistry, physics, and engineering are systems of polynomial or power-law ordinary differential equations, arising from a reaction network. Such dynamical systems can be generated by many different reaction networks. On the other hand, networks with special properties (such as reversibility or weak reversibility) are known or conjectured to give rise to dynamical systems that have special properties: existence of positive steady states, persistence, permanence, and (for well-chosen parameters) complex balancing or detailed balancing. These last two are related to thermodynamic equilibrium, and therefore the positive steady states are unique and stable. We describe a computationally efficient characterization of polynomial or power-law dynamical systems that can be obtained as complex-balanced, detailed-balanced, weakly reversible, and reversible mass-action systems.
A complex balanced kinetic system is absolutely complex balanced (ACB) if every positive equilibrium is complex balanced. Two results on absolute complex balancing were foundational for modern chemical reaction network theory (CRNT): in 1972, M. Fein
In this paper, we provide a graphic formulation of non-isothermal reaction systems and show that a non-isothermal detailed balanced network system converges (locally) asymptotically to the unique equilibrium within the invariant manifold determined b
This paper studies chemical kinetic systems which decompose into weakly reversible complex factorizable (CF) systems. Among power law kinetic systems, CF systems (denoted as PL-RDK systems) are those where branching reactions of a reactant complex ha
Mass-action kinetics and its generalizations appear in mathematical models of (bio-)chemical reaction networks, population dynamics, and epidemiology. The dynamical systems arising from directed graphs are generally non-linear and difficult to analyz
The use of two-site Lindblad dissipator to generate thermal states and study heat transport raised to prominence since [J. Stat. Mech. (2009) P02035] by Prosen and v{Z}nidariv{c}. Here we propose a variant of this method based on detailed balance of