ﻻ يوجد ملخص باللغة العربية
A complex balanced kinetic system is absolutely complex balanced (ACB) if every positive equilibrium is complex balanced. Two results on absolute complex balancing were foundational for modern chemical reaction network theory (CRNT): in 1972, M. Feinberg proved that any deficiency zero complex balanced system is absolutely complex balanced. In the same year, F. Horn and R. Jackson showed that the (full) converse of the result is not true: any complex balanced mass action system, regardless of its deficiency, is absolutely complex balanced. In this paper, we revive the study of ACB systems first by providing a partial converse to Feinbergs Theorem. In the spirit of Horn and Jacksons result, we then describe several methods for constructing new classes of ACB systems with positive deficiency and present classes of power law kinetic systems for each method. Furthermore, we illustrate the usefulness of the ACB property for obtaining new results on absolute concentration robustness (ACR) in a species, a concept introduced for mass action systems by Shinar and Feinberg in 2010, for a class of power law systems. Finally, we motivate the study of ACB in poly-PL systems, i.e. sums of power law systems, and indicate initial results.
Very often, models in biology, chemistry, physics, and engineering are systems of polynomial or power-law ordinary differential equations, arising from a reaction network. Such dynamical systems can be generated by many different reaction networks. O
This work introduces a novel approach to study properties of positive equilibria of a chemical reaction network $mathscr{N}$ endowed with Hill-type kinetics $K$, called a Hill-type kinetic (HTK) system $left(mathscr{N},Kright)$, including their multi
Absolute concentration robustness (ACR) is a condition wherein a species in a chemical kinetic system possesses the same value for any positive steady state the network may admit regardless of initial conditions. Thus far, results on ACR center on ch
This paper studies chemical kinetic systems which decompose into weakly reversible complex factorizable (CF) systems. Among power law kinetic systems, CF systems (denoted as PL-RDK systems) are those where branching reactions of a reactant complex ha
We provide an abstract framework for the study of certain spectral properties of parabolic systems; specifically, we determine under which general conditions to expect the presence of absolutely continuous spectral measures. We use these general cond