ترغب بنشر مسار تعليمي؟ اضغط هنا

A generalization of Birchs theorem and vertex-balanced steady states for generalized mass-action systems

379   0   0.0 ( 0 )
 نشر من قبل Polly Y. Yu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Mass-action kinetics and its generalizations appear in mathematical models of (bio-)chemical reaction networks, population dynamics, and epidemiology. The dynamical systems arising from directed graphs are generally non-linear and difficult to analyze. One approach to studying them is to find conditions on the network which either imply or preclude certain dynamical properties. For example, a vertex-balanced steady state for a generalized mass-action system is a state where the net flux through every vertex of the graph is zero. In particular, such steady states admit a monomial parametrization. The problem of existence and uniqueness of vertex-balanced steady states can be reformulated in two different ways, one of which is related to Birchs theorem in statistics, and the other one to the bijectivity of generalized polynomial maps, similar to maps appearing in geometric modelling. We present a generalization of Birchs theorem, by providing a sufficient condition for the existence and uniqueness of vertex-balanced steady states.



قيم البحث

اقرأ أيضاً

We show that weakly reversible mass-action systems can have a continuum of positive steady states, coming from the zeroes of a multivariate polynomial. Moreover, the same is true of systems whose underlying reaction network is reversible and has a si ngle connected component. In our construction, we relate operations on the reaction network to the multivariate polynomial occurring as a common factor in the system of differential equations.
A simplicial complex of dimension $d-1$ is said to be balanced if its graph is $d$-colorable. Juhnke-Kubitzke and Murai proved an analogue of the generalized lower bound theorem for balanced simplicial polytopes. We establish a generalization of thei r result to balanced triangulations of closed homology manifolds and balanced triangulations of orientable homology manifolds with boundary under an additional assumption that all proper links of these triangulations have the weak Lefschetz property. As a corollary, we show that if $Delta$ is an arbitrary balanced triangulation of any closed homology manifold of dimension $d-1 geq 3$, then $2h_2(Delta) - (d-1)h_1(Delta) geq 4{d choose 2}(tilde{beta}_1(Delta)-tilde{beta}_0(Delta))$, thus verifying a conjecture by Klee and Novik. To prove these results we develop the theory of flag $h$-vectors.
112 - Casian Pantea 2011
This paper concerns the long-term behavior of population systems, and in particular of chemical reaction systems, modeled by deterministic mass-action kinetics. We approach two important open problems in the field of Chemical Reaction Network Theory, the Persistence Conjecture and the Global Attractor Conjecture. We study the persistence of a large class of networks called lower-endotactic and in particular, we show that in weakly reversible mass-action systems with two-dimensional stoichiometric subspace all bounded trajectories are persistent. Moreover, we use these ideas to show that the Global Attractor Conjecture is true for systems with three-dimensional stoichiometric subspace.
Persistence and permanence are properties of dynamical systems that describe the long-term behavior of the solutions, and in particular specify whether positive solutions approach the boundary of the positive orthant. Mass-action systems (or more gen erally power-law systems) are very common in chemistry, biology, and engineering, and are often used to describe the dynamics in interaction networks. We prove that two-species mass-action systems derived from weakly reversible networks are both persistent and permanent, for any values of the reaction rate parameters. Moreover, we prove that a larger class of networks, called endotactic networks, also give rise to permanent systems, even if we allow the reaction rate parameters to vary in time. These results also apply to power-law systems and other nonlinear dynamical systems. In addition, ideas behind these results allow us to prove the Global Attractor Conjecture for three-species systems.
Very often, models in biology, chemistry, physics, and engineering are systems of polynomial or power-law ordinary differential equations, arising from a reaction network. Such dynamical systems can be generated by many different reaction networks. O n the other hand, networks with special properties (such as reversibility or weak reversibility) are known or conjectured to give rise to dynamical systems that have special properties: existence of positive steady states, persistence, permanence, and (for well-chosen parameters) complex balancing or detailed balancing. These last two are related to thermodynamic equilibrium, and therefore the positive steady states are unique and stable. We describe a computationally efficient characterization of polynomial or power-law dynamical systems that can be obtained as complex-balanced, detailed-balanced, weakly reversible, and reversible mass-action systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا