ﻻ يوجد ملخص باللغة العربية
In Bayesian classification, it is important to establish a probabilistic model for each class for likelihood estimation. Most of the previous methods modeled the probability distribution in the whole sample space. However, real-world problems are usually too complex to model in the whole sample space; some fundamental assumptions are required to simplify the global model, for example, the class conditional independence assumption for naive Bayesian classification. In this paper, with the insight that the distribution in a local sample space should be simpler than that in the whole sample space, a local probabilistic model established for a local region is expected much simpler and can relax the fundamental assumptions that may not be true in the whole sample space. Based on these advantages we propose establishing local probabilistic models for Bayesian classification. In addition, a Bayesian classifier adopting a local probabilistic model can even be viewed as a generalized local classification model; by tuning the size of the local region and the corresponding local model assumption, a fitting model can be established for a particular classification problem. The experimental results on several real-world datasets demonstrate the effectiveness of local probabilistic models for Bayesian classification.
Extreme multi-label text classification (XMTC) is a task for tagging a given text with the most relevant labels from an extremely large label set. We propose a novel deep learning method called APLC-XLNet. Our approach fine-tunes the recently release
Crowdsourcing has become widely used in supervised scenarios where training sets are scarce and difficult to obtain. Most crowdsourcing models in the literature assume labelers can provide answers to full questions. In classification contexts, full q
One of the challenges in model-based control of stochastic dynamical systems is that the state transition dynamics are involved, and it is not easy or efficient to make good-quality predictions of the states. Moreover, there are not many representati
A gradient boosting decision tree (GBDT), which aggregates a collection of single weak learners (i.e. decision trees), is widely used for data mining tasks. Because GBDT inherits the good performance from its ensemble essence, much attention has been
The k-nearest-neighbor method performs classification tasks for a query sample based on the information contained in its neighborhood. Previous studies into the k-nearest-neighbor algorithm usually achieved the decision value for a class by combining