ﻻ يوجد ملخص باللغة العربية
The k-nearest-neighbor method performs classification tasks for a query sample based on the information contained in its neighborhood. Previous studies into the k-nearest-neighbor algorithm usually achieved the decision value for a class by combining the support of each sample in the neighborhood. They have generally considered the nearest neighbors separately, and potentially integral neighborhood information important for classification was lost, e.g. the distribution information. This article proposes a novel local learning method that organizes the information in the neighborhood through local distribution. In the proposed method, additional distribution information in the neighborhood is estimated and then organized; the classification decision is made based on maximum posterior probability which is estimated from the local distribution in the neighborhood. Additionally, based on the local distribution, we generate a generalized local classification form that can be effectively applied to various datasets through tuning the parameters. We use both synthetic and real datasets to evaluate the classification performance of the proposed method; the experimental results demonstrate the dimensional scalability, efficiency, effectiveness and robustness of the proposed method compared to some other state-of-the-art classifiers. The results indicate that the proposed method is effective and promising in a broad range of domains.
Inspired by the fruit-fly olfactory circuit, the Fly Bloom Filter [Dasgupta et al., 2018] is able to efficiently summarize the data with a single pass and has been used for novelty detection. We propose a new classifier (for binary and multi-class cl
In this paper we propose the use of multiple local binary patterns(LBPs) to effectively classify land use images. We use the UC Merced 21 class land use image dataset. Task is challenging for classification as the dataset contains intra class variabi
We propose a model to tackle classification tasks in the presence of very little training data. To this aim, we approximate the notion of exact match with a theoretically sound mechanism that computes a probability of matching in the input space. Imp
In Bayesian classification, it is important to establish a probabilistic model for each class for likelihood estimation. Most of the previous methods modeled the probability distribution in the whole sample space. However, real-world problems are usu
We develop the concept of ABC-Boost (Adaptive Base Class Boost) for multi-class classification and present ABC-MART, a concrete implementation of ABC-Boost. The original MART (Multiple Additive Regression Trees) algorithm has been very successful in