ﻻ يوجد ملخص باللغة العربية
One of the challenges in model-based control of stochastic dynamical systems is that the state transition dynamics are involved, and it is not easy or efficient to make good-quality predictions of the states. Moreover, there are not many representational models for the majority of autonomous systems, as it is not easy to build a compact model that captures the entire dynamical subtleties and uncertainties. In this work, we present a hierarchical Bayesian linear regression model with local features to learn the dynamics of a micro-robotic system as well as two simpler examples, consisting of a stochastic mass-spring damper and a stochastic double inverted pendulum on a cart. The model is hierarchical since we assume non-stationary priors for the model parameters. These non-stationary priors make the model more flexible by imposing priors on the priors of the model. To solve the maximum likelihood (ML) problem for this hierarchical model, we use the variational expectation maximization (EM) algorithm, and enhance the procedure by introducing hidden target variables. The algorithm yields parsimonious model structures, and consistently provides fast and accurate predictions for all our examples involving large training and test sets. This demonstrates the effectiveness of the method in learning stochastic dynamics, which makes it suitable for future use in a paradigm, such as model-based reinforcement learning, to compute optimal control policies in real time.
In this paper, we improve the PAC-Bayesian error bound for linear regression derived in Germain et al. [10]. The improvements are twofold. First, the proposed error bound is tighter, and converges to the generalization loss with a well-chosen tempera
In Bayesian classification, it is important to establish a probabilistic model for each class for likelihood estimation. Most of the previous methods modeled the probability distribution in the whole sample space. However, real-world problems are usu
Variational dropout (VD) is a generalization of Gaussian dropout, which aims at inferring the posterior of network weights based on a log-uniform prior on them to learn these weights as well as dropout rate simultaneously. The log-uniform prior not o
We classify two types of Hierarchical Bayesian Model found in the literature as Hierarchical Prior Model (HPM) and Hierarchical Stochastic Model (HSM). Then, we focus on studying the theoretical implications of the HSM. Using examples of polynomial f
Despite their success, kernel methods suffer from a massive computational cost in practice. In this paper, in lieu of commonly used kernel expansion with respect to $N$ inputs, we develop a novel optimal design maximizing the entropy among kernel fea