ﻻ يوجد ملخص باللغة العربية
Since the 30s the interatomic potential of the beryllium dimer Be$_2$ has been both an experimental and a theoretical challenge. Calculating the ground-state correlation energy of Be$_2$ along its dissociation path is a difficult problem for theory. We present ab initio many-body perturbation theory calculations of the Be$_2$ interatomic potential using the GW approximation and the Bethe-Salpeter equation (BSE). The ground-state correlation energy is calculated by the trace formula with checks against the adiabatic-connection fluctuation-dissipation theorem formula. We show that inclusion of GW corrections already improves the energy even at the level of the random-phase approximation. At the level of the BSE on top of the GW approximation, our calculation is in surprising agreement with the most accurate theories and with experiment. It even reproduces an experimentally observed flattening of the interatomic potential due to a delicate correlations balance from a competition between covalent and van der Waals bonding.
We check the ab initio GW approximation and Bethe-Salpeter equation (BSE) many-body methodology against the exact solution benchmark of the hydrogen molecule H$_2$ ground state and excitation spectrum, and in comparison with the configuration interac
The problem of a relativistic bound-state system consisting of two scalar bosons interacting through the exchange of another scalar boson, in 2+1 space-time dimensions, has been studied. The Bethe-Salpeter equation (BSE) was solved by adopting the Na
We present a method to directly solving the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the singularities which appear in the kernel, propagators and Bethe-Salpeter amplitude
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
The scalar three-body Bethe-Salpeter equation, with zero-range interaction, is solved in Minkowski space by direct integration of the four-dimensional integral equation. The singularities appearing in the propagators are treated properly by standard