ﻻ يوجد ملخص باللغة العربية
The problem of a relativistic bound-state system consisting of two scalar bosons interacting through the exchange of another scalar boson, in 2+1 space-time dimensions, has been studied. The Bethe-Salpeter equation (BSE) was solved by adopting the Nakanishi integral representation (NIR) and the Light-Front projection. The NIR allows us to solve the BSE in Minkowski space, which is a big and important challenge, since most of non-perturbative calculations are done in Euclidean space, e.g. Lattice and Schwinger-Dyson calculations. We have in this work adopted an interaction kernel containing the ladder and cross-ladder exchanges. In order to check that the NIR is also a good representation in 2+1, the coupling constants and Wick-rotated amplitudes have been computed and compared with calculations performed in Euclidean space. Very good agreement between the calculations performed in the Minkowski and Euclidean spaces has been found. This is an important consistence test that allows Minkowski calculations with the Nakanishi representation in 2+1 dimensions. This relativistic approach will allow us to perform applications in condensed matter problems in a near future.
We present a method to directly solving the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the singularities which appear in the kernel, propagators and Bethe-Salpeter amplitude
The method of solving the Bethe-Salpeter equation in Minkowski space, which we developed previously for spinless particles, is extended to a system of two fermions. The method is based on the Nakanishi integral representation of the amplitude and on
The ladder Bethe-Salpeter Equation of a bound (1/2)+ system, composed by a fermion and a scalar boson, is solved in Minkowski space, for the first time. The formal tools are the same already successfully adopted for two-scalar and two-fermion systems
The scalar three-body Bethe-Salpeter equation, with zero-range interaction, is solved in Minkowski space by direct integration of the four-dimensional integral equation. The singularities appearing in the propagators are treated properly by standard
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.