ﻻ يوجد ملخص باللغة العربية
We check the ab initio GW approximation and Bethe-Salpeter equation (BSE) many-body methodology against the exact solution benchmark of the hydrogen molecule H$_2$ ground state and excitation spectrum, and in comparison with the configuration interaction (CI) and time-dependent Hartree-Fock methods. The comparison is made on all the states we could unambiguously identify from the excitonic wave functions symmetry. At the equilibrium distance $R = 1.4 , a_0$, the GW+BSE energy levels are in good agreement with the exact results, with an accuracy of 0.1~0.2 eV. GW+BSE potential-energy curves are also in good agreement with the CI and the exact result up to $2.3 , a_0$. The solution no longer exists beyond $3.0 , a_0$ for triplets ($4.3 , a_0$ for singlets) due to instability of the ground state. We tried to improve the GW reference ground state by a renormalized random-phase approximation (r-RPA), but this did not solve the problem.
Helium atom is the simplest many-body electronic system provided by nature. The exact solution to the Schrodinger equation is known for helium ground and excited states, and represents a workbench for any many-body methodology. Here, we check the ab
Since the 30s the interatomic potential of the beryllium dimer Be$_2$ has been both an experimental and a theoretical challenge. Calculating the ground-state correlation energy of Be$_2$ along its dissociation path is a difficult problem for theory.
We study the possible bound states of the $D_1D$ system in the Bethe-Salpeter (BS) formalism in the ladder and instantaneous approximations. By solving the BS equation numerically with the kernel containing one-particle exchange diagrams and introduc
We present a hybrid approach for GW/Bethe-Salpeter Equation (BSE) calculations of core excitation spectra, including x-ray absorption (XAS), electron energy loss spectra (EELS), and non-resonant inelastic x-ray scattering (NRIXS). The method is based
We study within the many-body Greens function GW and Bethe-Salpeter formalisms the excitation energies of a paradigmatic model dipeptide, focusing on the four lowest-lying local and charge-transfer excitations. Our GW calculations are performed at th