ﻻ يوجد ملخص باللغة العربية
Classical molecular dynamics (MD) simulations enable modeling of materials and examination of microscopic details that are not accessible experimentally. The predictive capability of MD relies on the force field (FF) used to describe interatomic interactions. FF parameters are typically determined to reproduce selected material properties computed from density functional theory (DFT) and/or measured experimentally. A common practice in parameterizing FFs is to use least-squares local minimization algorithms. Genetic algorithms (GAs) have also been demonstrated as a viable global optimization approach, even for complex FFs. However, an understanding of the relative effectiveness and efficiency of different optimization techniques for the determination of FF parameters is still lacking. In this work, we evaluate various FF parameter optimization schemes, using as example a training data set calculated from DFT for different polymorphs of Ir$O_2$. The Morse functional form is chosen for the pairwise interactions and the optimization of the parameters against the training data is carried out using (1) multi-start local optimization algorithms: Simplex, Levenberg-Marquardt, and POUNDERS, (2) single-objective GA, and (3) multi-objective GA. Using random search as a baseline, we compare the algorithms in terms of reaching the lowest error, and number of function evaluations. We also compare the effectiveness of different approaches for FF parameterization using a test data set with known ground truth (i.e generated from a specific Morse FF). We find that the performance of optimization approaches differs when using the Test data vs. the DFT data. Overall, this study provides insight for selecting a suitable optimization method for FF parameterization, which in turn can enable more accurate prediction of material properties and chemical phenomena.
In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mos importance as a struc
Parameterization of interatomic forcefields is a necessary first step in performing molecular dynamics simulations. This is a non-trivial global optimization problem involving quantification of multiple empirical variables against one or more propert
Abstract Machine learning models, trained on data from ab initio quantum simulations, are yielding molecular dynamics potentials with unprecedented accuracy. One limiting factor is the quantity of available training data, which can be expensive to ob
Thermal and other transport coefficients were recently shown to be largely independent of the microscopic representation of the energy (current) densities or, more generally, of the relevant conserved densities/currents. In this paper we show how thi
This work develops a new open source API and software package called textit{SymPhas} for simulations of phase-field, phase-field crystal and reaction-diffusion models, supporting up to three dimensions and an arbitrary number of fields. textit{SymPha