ﻻ يوجد ملخص باللغة العربية
This work develops a new open source API and software package called textit{SymPhas} for simulations of phase-field, phase-field crystal and reaction-diffusion models, supporting up to three dimensions and an arbitrary number of fields. textit{SymPhas} delivers two novel program capabilities: 1) User specification of models from the associated dynamical equations in an unconstrained form and 2) extensive support for integrating user-developed discrete-grid-based numerical solvers into the API. The capability to specify general phase-field models is primarily achieved by developing a novel symbolic algebra functionality that can formulate mathematical expressions at compile time, is able to apply rules of symbolic algebra such as distribution, factoring and automatic simplification, and support user-driven expression tree manipulation. A modular design based on the CC++ template meta-programming paradigm is applied to the symbolic algebra library and general API implementation to minimize application runtime and increase the accessibility of the API for third party development. textit{SymPhas} is written in C/CC++ and emphasizes high-performance capabilities via parallelization with OpenMP and the CC++ standard library. textit{SymPhas} is equipped with a forward Euler solver and a semi-implicit Fourier spectral solver. Sample implementations and simulations of several phase-field models are presented, generated using the semi-implicit Fourier spectral solver.
The study of polycrystalline materials requires theoretical and computational techniques enabling multiscale investigations. The amplitude expansion of the phase field crystal model (APFC) allows for describing crystal lattice properties on diffusive
In this paper, we develop an efficient lattice Boltzmann (LB) model for simulating immiscible incompressible $N$-phase flows $(N geq 2)$ based on the Cahn-Hilliard phase field theory. In order to facilitate the design of LB model and reduce the calcu
In this paper we present two unconditionally energy stable finite difference schemes for the Modified Phase Field Crystal (MPFC) equation, a sixth-order nonlinear damped wave equation, of which the purely parabolic Phase Field Crystal (PFC) model can
Phase field methods have been widely used to study phase transitions and polarization switching in ferroelectric thin films. In this paper, we develop an efficient numerical scheme for the variational phase field model based on variational forms of t
Bilayer graphene has been a subject of intense study in recent years. We extend a structural phase field crystal method to include an external potential from adjacent layer(s), which is generated by the corresponding phase field and changes over time