ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate Force Field for Molybdenum by Machine Learning Large Materials Data

289   0   0.0 ( 0 )
 نشر من قبل Chi Chen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mos importance as a structural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods still do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including energies, forces, stresses, elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large-scale, long-time scale simulations.



قيم البحث

اقرأ أيضاً

Abstract Machine learning models, trained on data from ab initio quantum simulations, are yielding molecular dynamics potentials with unprecedented accuracy. One limiting factor is the quantity of available training data, which can be expensive to ob tain. A quantum simulation often provides all atomic forces, in addition to the total energy of the system. These forces provide much more information than the energy alone. It may appear that training a model to this large quantity of force data would introduce significant computational costs. Actually, training to all available force data should only be a few times more expensive than training to energies alone. Here, we present a new algorithm for efficient force training, and benchmark its accuracy by training to forces from real-world datasets for organic chemistry and bulk aluminum.
As data science and machine learning methods are taking on an increasingly important role in the materials research community, there is a need for the development of machine learning software tools that are easy to use (even for nonexperts with no pr ogramming ability), provide flexible access to the most important algorithms, and codify best practices of machine learning model development and evaluation. Here, we introduce the Materials Simulation Toolkit for Machine Learning (MAST-ML), an open source Python-based software package designed to broaden and accelerate the use of machine learning in materials science research. MAST-ML provides predefined routines for many input setup, model fitting, and post-analysis tasks, as well as a simple structure for executing a multi-step machine learning model workflow. In this paper, we describe how MAST-ML is used to streamline and accelerate the execution of machine learning problems. We walk through how to acquire and run MAST-ML, demonstrate how to execute different components of a supervised machine learning workflow via a customized input file, and showcase a number of features and analyses conducted automatically during a MAST-ML run. Further, we demonstrate the utility of MAST-ML by showcasing examples of recent materials informatics studies which used MAST-ML to formulate and evaluate various machine learning models for an array of materials applications. Finally, we lay out a vision of how MAST-ML, together with complementary software packages and emerging cyberinfrastructure, can advance the rapidly growing field of materials informatics, with a focus on producing machine learning models easily, reproducibly, and in a manner that facilitates model evolution and improvement in the future.
Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, often by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We comprehensively review and discuss current representations and relations between them, using a unified mathematical framework based on many-body functions, group averaging, and tensor products. For selected state-of-the-art representations, we compare energy predictions for organic molecules, binary alloys, and Al-Ga-In sesquioxides in numerical experiments controlled for data distribution, regression method, and hyper-parameter optimization.
Machine learning algorithms have recently emerged as a tool to generate force fields which display accuracies approaching the ones of the ab-initio calculations they are trained on, but are much faster to compute. The enhanced computational speed of machine learning force fields results key for modelling metallic nanoparticles, as their fluxionality and multi-funneled energy landscape needs to be sampled over long time scales. In this review, we first formally introduce the most commonly used machine learning algorithms for force field generation, briefly outlining their structure and properties. We then address the core issue of training database selection, reporting methodologies both already used and yet unused in literature. We finally report and discuss the recent literature regarding machine learning force fields to sample the energy landscape and study the catalytic activity of metallic nanoparticles.
Classical molecular dynamics (MD) simulations enable modeling of materials and examination of microscopic details that are not accessible experimentally. The predictive capability of MD relies on the force field (FF) used to describe interatomic inte ractions. FF parameters are typically determined to reproduce selected material properties computed from density functional theory (DFT) and/or measured experimentally. A common practice in parameterizing FFs is to use least-squares local minimization algorithms. Genetic algorithms (GAs) have also been demonstrated as a viable global optimization approach, even for complex FFs. However, an understanding of the relative effectiveness and efficiency of different optimization techniques for the determination of FF parameters is still lacking. In this work, we evaluate various FF parameter optimization schemes, using as example a training data set calculated from DFT for different polymorphs of Ir$O_2$. The Morse functional form is chosen for the pairwise interactions and the optimization of the parameters against the training data is carried out using (1) multi-start local optimization algorithms: Simplex, Levenberg-Marquardt, and POUNDERS, (2) single-objective GA, and (3) multi-objective GA. Using random search as a baseline, we compare the algorithms in terms of reaching the lowest error, and number of function evaluations. We also compare the effectiveness of different approaches for FF parameterization using a test data set with known ground truth (i.e generated from a specific Morse FF). We find that the performance of optimization approaches differs when using the Test data vs. the DFT data. Overall, this study provides insight for selecting a suitable optimization method for FF parameterization, which in turn can enable more accurate prediction of material properties and chemical phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا