ﻻ يوجد ملخص باللغة العربية
All tree-level amplitudes in Einstein-Yang-Mills (EYM) theory and gravity (GR) can be expanded in terms of color ordered Yang-Mills (YM) ones whose coefficients are polynomial functions of Lorentz inner products and are constructed by a graphic rule. Once the gauge invariance condition of any graviton is imposed, the expansion of a tree level EYM or gravity amplitude induces a nontrivial identity between color ordered YM amplitudes. Being different from traditional Kleiss-Kuijf (KK) and Bern-Carrasco-Johansson (BCJ) relations, the gauge invariance induced identity includes polarizations in the coefficients. In this paper, we investigate the relationship between the gauge invariance induced identity and traditional BCJ relations. By proposing a refined graphic rule, we prove that all the gauge invariance induced identities for single trace tree-level EYM amplitudes can be precisely expanded in terms of traditional BCJ relations, without referring any property of polarizations. When further considering the transversality of polarizations and momentum conservation, we prove that the gauge invariance induced identity for tree-level GR (or pure YM) amplitudes can also be expanded in terms of traditional BCJ relations for YM (or bi-scalar) amplitudes. As a byproduct, a graph-based BCJ relation is proposed and proved.
Symmetries of Einstein-Yang-Mills (EYM) amplitudes, together with the recursive expansions, induce nontrivial identities for pure Yang-Mills amplitudes. In the previous work cite{Hou:2018bwm}, we have already proven that the identities induced from t
On the basis of recent results extending non-trivially the Poincare symmetry, we investigate the properties of bosonic multiplets including $2-$form gauge fields. Invariant free Lagrangians are explicitly built which involve possibly $3-$ and $4-$for
Basis tensor gauge theory (BTGT) is a vierbein analog reformulation of ordinary gauge theories in which the vierbein field describes the Wilson line. After a brief review of the BTGT, we clarify the Lorentz group representation properties associated
In Lagrangian gauge systems, the vector space of global reducibility parameters forms a module under the Lie algebra of symmetries of the action. Since the classification of global reducibility parameters is generically easier than the classification
The radiative induction of the CPT and Lorentz violating Chern-Simons (CS) term is reassessed. The massless and massive models are studied. Special attention is given to the preservation of gauge symmetry at higher orders in the background vector $b_