ﻻ يوجد ملخص باللغة العربية
In Lagrangian gauge systems, the vector space of global reducibility parameters forms a module under the Lie algebra of symmetries of the action. Since the classification of global reducibility parameters is generically easier than the classification of symmetries of the action, this fact can be used to constrain the latter when knowing the former. We apply this strategy and its generalization for the non-Lagrangian setting to the problem of conformal symmetry of various free higher spin gauge fields. This scheme allows one to show that, in terms of potentials, massless higher spin gauge fields in Minkowski space and partially-massless fields in (A)dS space are not conformal for spin strictly greater than one, while in terms of curvatures, maximal-depth partially-massless fields in four dimensions are also not conformal, unlike the closely related, but less constrained, maximal-depth Fradkin--Tseytlin fields.
The problem of maintaining scale and conformal invariance in Maxwell and general N-form gauge theories away from their critical dimension d=2(N+1) is analyzed.We first exhibit the underlying group-theoretical clash between locality,gauge,Lorentz and
The onset of quantum chaos in quantum field theory may be studied using out-of-time-order correlators at finite temperature. Recent work argued that a timescale logarithmic in the central charge emerged in the context of two-dimensional conformal fie
The most general lagrangian describing spin 2 particles in flat spacetime and containing operators up to (mass) dimension 6 is carefully analyzed, determining the precise conditions for it to be invariant under linearized (transverse) diffeomorphisms
In this note we study IR limits of pure two-dimensional supersymmetric gauge theories with semisimple non-simply-connected gauge groups including SU(k)/Z_k, SO(2k)/Z_2, Sp(2k)/Z_2, E_6/Z_3, and E_7/Z_2 for various discrete theta angles, both directly
We study the implications of scale invariance in four-dimensional quantum field theories. Imposing unitarity, we find that infinitely many matrix elements vanish in a suitable kinematical configuration. This vanishing is a nontrivial necessary condit