ﻻ يوجد ملخص باللغة العربية
We show how to calculate the effective potential of SU(3) QCD which tells that the true minimum is given by the monopole condensation. To do this we make the gauge independent Weyl symmetric Abelian decomposition of the SU(3) QCD which decomposes the gluons to the color neutral neurons and the colored chromons. In the perturbative regime this decomposes the Feynman diagram in such a way that the conservation of color is explicit. Moreover, this shows the existence of two gluon jets, the neuron jet and chromon jet, which can be verified by experiment. In the non-perturbative regime, the decomposition puts QCD to the background field formalism and reduces the non-Abelian gauge symmetry to a discrete color reflection symmetry, and provides us an ideal platform to calculate the one-loop effective action of QCD. Integrating out the chromons from the Weyl symmetric Abelian decomposition of QCD gauge invariantly imposing the color reflection invariance, we obtain the SU(3) QCD effective potential which generates the stable monopole condensation and the mass gap. We discuss the physical implications of our result, in particular the possible existence of the vacuum fluctuation mode of the monopole condensation in QCD.
We show how to generalize the previous result of the monopole condensation in SU(2) QCD to SU(3) QCD. We present the gauge independent Weyl symmetric Abelian decomposition of the SU(3) QCD which decomposes the gluons to the color neutral neurons and
We obtain an almost perfect monopole action numerically after abelian projection in pure SU(3) lattice QCD. Performing block-spin transformations on the dual lattice, the action fixed depends only on a physical scale b. Monopole condensation occurs f
We present the first study of the Abelian-projected gluonic-excitation energies for the static quark-antiquark (Q$bar{rm Q}$) system in SU(3) lattice QCD at the quenched level, using a $32^4$ lattice at $beta = 6.0$. We investigate ground-state and t
We derive four dimensional $mathcal{N}=1$ supersymmetric effective theory from ten dimensional non-Abelian Dirac-Born-Infeld action compactified on a six dimensional torus with magnetic fluxes on the D-branes. For the ten dimensional action, we use a
We present the first determination of the binding energy of the $H$ dibaryon in the continuum limit of lattice QCD. The calculation is performed at five values of the lattice spacing $a$, using O($a$)-improved Wilson fermions at the SU(3)-symmetric p