ﻻ يوجد ملخص باللغة العربية
We present the first study of the Abelian-projected gluonic-excitation energies for the static quark-antiquark (Q$bar{rm Q}$) system in SU(3) lattice QCD at the quenched level, using a $32^4$ lattice at $beta = 6.0$. We investigate ground-state and three excited-state Q$bar{rm Q}$ potentials, using smeared link variables on the lattice. We find universal Abelian dominance for the quark confinement force of the excited-state Q$bar{rm Q}$ potentials as well as the ground-state potential. Remarkably, in spite of the excitation phenomenon in QCD, we find Abelian dominance for the first gluonic-excitation energy of about 1 GeV at long distances in the maximally Abelian gauge. On the other hand, no Abelian dominance is observed for higher gluonic-excitation energies even at long distances. This suggests that there is some threshold between 1 and 2 GeV for the applicable excitation-energy region of Abelian dominance. Also, we find that Abelian projection significantly reduces the short-distance $1/r$-like behavior in gluonic-excitation energies.
To check the dual superconductor picture for the quark-confinement mechanism, we evaluate monopole dominance as well as Abelian dominance of quark confinement for both quark-antiquark and three-quark systems in SU(3) quenched lattice QCD in the maxim
We study spontaneous chiral-symmetry breaking in SU(3) QCD in terms of the dual superconductor picture for quark confinement in the maximally Abelian (MA) gauge, using lattice QCD Monte Carlo simulations with four different lattices of $16^4$, $24^4$
We present the first determination of the binding energy of the $H$ dibaryon in the continuum limit of lattice QCD. The calculation is performed at five values of the lattice spacing $a$, using O($a$)-improved Wilson fermions at the SU(3)-symmetric p
We present results of an exploratory study of flavor SU(3) breaking effects in hyperon beta decays using domain wall fermions. From phenomenological point of view, the significance of this subject is twofold: (1) to extract the element $V_{us}$ of th
Using the lattice gauge field theory, we study the relation among the local chiral condensate, monopoles, and color magnetic fields in quantum chromodynamics (QCD). First, we investigate idealized Abelian gauge systems of 1) a static monopole-antimon