ﻻ يوجد ملخص باللغة العربية
We present the first determination of the binding energy of the $H$ dibaryon in the continuum limit of lattice QCD. The calculation is performed at five values of the lattice spacing $a$, using O($a$)-improved Wilson fermions at the SU(3)-symmetric point with $m_pi=m_Kapprox 420$ MeV. Energy levels are extracted by applying a variational method to correlation matrices of bilocal two-baryon interpolating operators computed using the distillation technique. Our analysis employs Luschers finite-volume quantization condition to determine the scattering phase shifts from the spectrum and vice versa, both above and below the two-baryon threshold. We perform global fits to the lattice spectra using parametrizations of the phase shift, supplemented by terms describing discretization effects, then extrapolate the lattice spacing to zero. The phase shift and the binding energy determined from it are found to be strongly affected by lattice artifacts. Our estimate of the binding energy in the continuum limit of three-flavor QCD is $B_H=3.97pm1.16_{rm stat}pm0.86_{rm syst}$ MeV.
We present evidence for the existence of a bound H-dibaryon, an I=0, J=0, s=-2 state with valence quark structure uuddss, at a pion mass of m_pi ~ 389 MeV. Using the results of Lattice QCD calculations performed on four ensembles of anisotropic clove
The current constraints from lattice QCD on the existence of the H-dibaryon are discussed. With only two significant lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the forms of the chiral and cont
We present a lattice QCD spectroscopy study in the isospin singlet, strangeness $-2$ sectors relevant for the conjectured $H$ dibaryon. We employ both local and bilocal interpolating operators to isolate the ground state in the rest frame and in movi
We present the first calculation within lattice QCD of excited light meson resonances with $J^{PC} = 1^{--}$, $2^{--}$ and $3^{--}$. Working with an exact SU(3) flavor symmetry, for the singlet representation of pseudoscalar-vector scattering, we fin
We present preliminary results from a lattice QCD calculation of the H-dibaryon using two flavors of $mathcal{O}(a)$ improved Wilson fermions. We employ local six-quark interpolating operators at the source with a combination of local six-quark and t