ﻻ يوجد ملخص باللغة العربية
We propose a setting for two-phase opinion dynamics in social networks, where a nodes final opinion in the first phase acts as its initial biased opinion in the second phase. In this setting, we study the problem of two camps aiming to maximize adoption of their respective opinions, by strategically investing on nodes in the two phases. A nodes initial opinion in the second phase naturally plays a key role in determining the final opinion of that node, and hence also of other nodes in the network due to its influence on them. More importantly, this bias also determines the effectiveness of a camps investment on that node in the second phase. To formalize this two-phase investment setting, we propose an extension of Friedkin-Johnsen model, and hence formulate the utility functions of the camps. There is a tradeoff while splitting the budget between the two phases. A lower investment in the first phase results in worse initial biases for the second phase, while a higher investment spares a lower available budget for the second phase. We first analyze the non-competitive case where only one camp invests, for which we present a polynomial time algorithm for determining an optimal way to split the camps budget between the two phases. We then analyze the case of competing camps, where we show the existence of Nash equilibrium and that it can be computed in polynomial time under reasonable assumptions. We conclude our study with simulations on real-world network datasets, in order to quantify the effects of the initial biases and the weightage attributed by nodes to their initial biases, as well as that of a camp deviating from its equilibrium strategy. Our main conclusion is that, if nodes attribute high weightage to their initial biases, it is advantageous to have a high investment in the first phase, so as to effectively influence the biases to be harnessed in the second phase.
Analysis of opinion dynamics in social networks plays an important role in todays life. For applications such as predicting users political preference, it is particularly important to be able to analyze the dynamics of competing opinions. While obser
We study a tractable opinion dynamics model that generates long-run disagreements and persistent opinion fluctuations. Our model involves an inhomogeneous stochastic gossip process of continuous opinion dynamics in a society consisting of two types o
We investigate the impact of noise and topology on opinion diversity in social networks. We do so by extending well-established models of opinion dynamics to a stochastic setting where agents are subject both to assimilative forces by their local soc
In this paper, we propose a generalized opinion dynamics model (GODM), which can dynamically compute each persons expressed opinion, to solve the internal opinion maximization problem for social trust networks. In the model, we propose a new, reasona
Structural balance theory has been developed in sociology and psychology to explain how interacting agents, e.g., countries, political parties, opinionated individuals, with mixed trust and mistrust relationships evolve into polarized camps. Recent r