ﻻ يوجد ملخص باللغة العربية
Structural balance theory has been developed in sociology and psychology to explain how interacting agents, e.g., countries, political parties, opinionated individuals, with mixed trust and mistrust relationships evolve into polarized camps. Recent results have shown that structural balance is necessary for polarization in networks with fixed, strongly connected neighbor relationships when the opinion dynamics are described by DeGroot-type averaging rules. We develop this line of research in this paper in two steps. First, we consider fixed, not necessarily strongly connected, neighbor relationships. It is shown that if the network includes a strongly connected subnetwork containing mistrust, which influences the rest of the network, then no opinion clustering is possible when that subnetwork is not structurally balanced; all the opinions become neutralized in the end. In contrast, it is shown that when that subnetwork is indeed structurally balanced, the agents of the subnetwork evolve into two polarized camps and the opinions of all other agents in the network spread between these two polarized opinions. Second, we consider time-varying neighbor relationships. We show that the opinion separation criteria carry over if the conditions for fixed graphs are extended to joint graphs. The results are developed for both discrete-time and continuous-time models.
We study a tractable opinion dynamics model that generates long-run disagreements and persistent opinion fluctuations. Our model involves an inhomogeneous stochastic gossip process of continuous opinion dynamics in a society consisting of two types o
In this paper, we propose a generalized opinion dynamics model (GODM), which can dynamically compute each persons expressed opinion, to solve the internal opinion maximization problem for social trust networks. In the model, we propose a new, reasona
The problem of analyzing the performance of networked agents exchanging evidence in a dynamic network has recently grown in importance. This problem has relevance in signal and data fusion network applications and in studying opinion and consensus dy
We investigate the impact of noise and topology on opinion diversity in social networks. We do so by extending well-established models of opinion dynamics to a stochastic setting where agents are subject both to assimilative forces by their local soc
Signed networks have long been used to represent social relations of amity (+) and enmity (-) between individuals. Group of individuals who are cyclically connected are said to be balanced if the number of negative edges in the cycle is even and unba