ﻻ يوجد ملخص باللغة العربية
We study a tractable opinion dynamics model that generates long-run disagreements and persistent opinion fluctuations. Our model involves an inhomogeneous stochastic gossip process of continuous opinion dynamics in a society consisting of two types of agents: regular agents, who update their beliefs according to information that they receive from their social neighbors; and stubborn agents, who never update their opinions. When the society contains stubborn agents with different opinions, the belief dynamics never lead to a consensus (among the regular agents). Instead, beliefs in the society fail to converge almost surely, the belief profile keeps on fluctuating in an ergodic fashion, and it converges in law to a non-degenerate random vector. The structure of the network and the location of the stubborn agents within it shape the opinion dynamics. The expected belief vector evolves according to an ordinary differential equation coinciding with the Kolmogorov backward equation of a continuous-time Markov chain with absorbing states corresponding to the stubborn agents and converges to a harmonic vector, with every regular agents value being the weighted average of its neighbors values, and boundary conditions corresponding to the stubborn agents. Expected cross-products of the agents beliefs allow for a similar characterization in terms of coupled Markov chains on the network. We prove that, in large-scale societies which are highly fluid, meaning that the product of the mixing time of the Markov chain on the graph describing the social network and the relative size of the linkages to stubborn agents vanishes as the population size grows large, a condition of emph{homogeneous influence} emerges, whereby the stationary beliefs marginal distributions of most of the regular agents have approximately equal first and second moments.
Structural balance theory has been developed in sociology and psychology to explain how interacting agents, e.g., countries, political parties, opinionated individuals, with mixed trust and mistrust relationships evolve into polarized camps. Recent r
With the recent advances of networking technology, connections among people are unprecedentedly enhanced. People with different ideologies and backgrounds interact with each other, and there may exist severe opinion polarization and disagreement in t
We investigate the impact of noise and topology on opinion diversity in social networks. We do so by extending well-established models of opinion dynamics to a stochastic setting where agents are subject both to assimilative forces by their local soc
We propose a setting for two-phase opinion dynamics in social networks, where a nodes final opinion in the first phase acts as its initial biased opinion in the second phase. In this setting, we study the problem of two camps aiming to maximize adopt
Analysis of opinion dynamics in social networks plays an important role in todays life. For applications such as predicting users political preference, it is particularly important to be able to analyze the dynamics of competing opinions. While obser