ﻻ يوجد ملخص باللغة العربية
We study the mean value properties of $mathbf{p}$-harmonic functions on the first Heisenberg group $mathbb{H}$, in connection to the dynamic programming principles of certain stochastic processes. We implement the approach of Peres-Scheffield to provide the game-theoretical interpretation of the sub-elliptic $mathbf{p}$-Laplacian; and of Manfredi-Parviainen-Rossi to characterize its viscosity solutions via the asymptotic mean value expansions.
This is a preprint of Chapter 2 in the following work: Marta Lewicka, A Course on Tug-of-War Games with Random Noise, 2020, Springer, reproduced with permission of Springer Nature Switzerland AG. We present the basic relation between the linear pot
This paper concerns the fractional $p$-Laplace operator $Delta_p^s$ in non-divergence form, which has been introduced in [Bjorland, Caffarelli, Figalli (2012)]. For any $pin [2,infty)$ and $sin (frac{1}{2},1)$ we first define two families of non-loca
We simulate a tug-of-war (TOW) scenario for a model double-stranded DNA threading through a double nanopore (DNP) system. The DNA, simultaneously captured at both pores is subject to two equal and opposite forces $-vec{f}_L= vec{f}_R$ (TOW), where $v
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
We study survival of nearest-neighbour branching random walks in random environment (BRWRE) on ${mathbb Z}$. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and st