ﻻ يوجد ملخص باللغة العربية
We simulate a tug-of-war (TOW) scenario for a model double-stranded DNA threading through a double nanopore (DNP) system. The DNA, simultaneously captured at both pores is subject to two equal and opposite forces $-vec{f}_L= vec{f}_R$ (TOW), where $vec{f}_L$ and $vec{f}_R$ are the forces applied to the left and the right pore respectively. Even though the net force on the DNA polymer $Delta vec{f}_{LR}=vec{f}_L+ vec{f}_R=0$, the mean first passage time (MFPT) $langle tau rangle$ depends on the magnitude of the TOW forces $ left | f_L right | = left |f_R right | = f_{LR}$. We qualitatively explain this dependence of $langle tau rangle$ on $f_{LR}$ from the known results for the single-pore translocation of a triblock copolymer. We demonstrate that the time of flight (TOF) of a monomer with index $m$ ($langle tau_{LR}(m) rangle$) from one pore to the other exhibits quasi-periodic structure commensurate with the distance between the pores $d_{LR}$. Finally, we study the case $Delta vec{f}_{LR}=vec{f}_L+ vec{f}_R e 0$, and qualitatively reproduce the experimental result of the dependence of the MFPT on $Deltavec{f}_{LR}$. For a moderate bias, the MFPT for the DNP system for a chain length $N$ follows the same scaling ansatz as that of for the single nanopore, $langle tau rangle = left( AN^{1+ u} + eta_{pore}N right) left(Delta f_{LR}right)^{-1}$, where $eta_{pore}$ is the pore friction, which enables us to estimate $langle tau rangle $ for a long chain. Our Brownian dynamics simulation studies provide fundamental insights and valuable information about the details of the translocation speed obtained from $langle tau_{LR}(m) rangle$, and accuracy of the translation of the data obtained in the time-domain to units of genomic distances.
The potential of a double nanopore system to determine DNA barcodes has been demonstrated experimentally. By carrying out Brownian dynamics simulation on a coarse-grained model DNA with protein tag (barcodes) at known locations along the chain backbo
We study escape dynamics of a double-stranded DNA (dsDNA) through an idealized double nanopore (DNP) geometry subject to two equal and opposite forces (tug-of-war) using Brownian dynamics (BD) simulation. In addition to the geometrical restrictions i
This is a preprint of Chapter 2 in the following work: Marta Lewicka, A Course on Tug-of-War Games with Random Noise, 2020, Springer, reproduced with permission of Springer Nature Switzerland AG. We present the basic relation between the linear pot
We propose a simple channel-allocation method based on tug-of-war (TOW) dynamics, combined with the time scheduling based on nonlinear oscillator synchronization to efficiently use of the space (channel) and time resources in wireless communications.
We study the mean value properties of $mathbf{p}$-harmonic functions on the first Heisenberg group $mathbb{H}$, in connection to the dynamic programming principles of certain stochastic processes. We implement the approach of Peres-Scheffield to prov