ﻻ يوجد ملخص باللغة العربية
We set the formalism to study the way in which the choice of canonical equilibrium initial conditions affect the real-time dynamics of quantum disordered models. We use a path integral formulation on a time contour with real and imaginary time branches. The factorisation of the time-integration paths usually assumed in field-theoretical studies breaks down due to the averaging over quenched randomness. We derive the set of Schwinger-Dyson dynamical equations that govern the evolution of linear response and correlation functions. The solution of these equations is not straightforward as it needs, as an input, the full imaginary-time (or Matsubara frequency) dependence of the correlation in equilibrium. We check some limiting cases (equilibrium dynamics, classical limit) and we set the stage for the analytic and numerical analysis of quenches in random quantum systems.
In this work, we study the crystalline nuclei growth in glassy systems focusing primarily on the early stages of the process, at which the size of a growing nucleus is still comparable with the critical size. On the basis of molecular dynamics simula
We study the dynamics of one and two dimensional disordered lattice bosons/fermions initialized to a Fock state with a pattern of $1$ and $0$ particles on $A$ and ${bar A}$ sites. For non-interacting systems we establish a universal relation between
We study the problem of initial conditions for slow-roll inflation along a plateau-like scalar potential within the framework of fluctuation-dissipation dynamics. We consider, in particular, that inflation was preceded by a radiation-dominated epoch
We numerically study out-of-equilibrium dynamics in a family of Heisenberg models with $1/r^6$ power-law interactions and positional disorder. Using the semi-classical discrete truncated Wigner approximation (dTWA) method, we investigate the time evo
A Molecular Dynamics (MD) study of static and dynamic properties of molten and glassy germanium dioxide is presented. The interactions between the atoms are modelled by the classical pair potential proposed by Oeffner and Elliott (OE) [Oeffner R D an