ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiclassical simulations predict glassy dynamics for disordered Heisenberg models

261   0   0.0 ( 0 )
 نشر من قبل Philipp Schultzen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically study out-of-equilibrium dynamics in a family of Heisenberg models with $1/r^6$ power-law interactions and positional disorder. Using the semi-classical discrete truncated Wigner approximation (dTWA) method, we investigate the time evolution of the magnetization and ensemble-averaged single-spin purity for a strongly disordered system after initializing the system in an out-of-equilibrium state. We find that both quantities display robust glassy behavior for almost any value of the anisotropy parameter of the Heisenberg Hamiltonian. Furthermore, a systematic analysis allows us to quantitatively show that, for all the scenarios considered, the stretch power lies close to the one analytically obtained in the Ising limit. This indicates that glassy relaxation behavior occurs widely in disordered quantum spin systems, independent of the particular symmetries and integrability of the Hamiltonian.



قيم البحث

اقرأ أيضاً

We study a class of Markov chains that describe reversible stochastic dynamics of a large class of disordered mean field models at low temperatures. Our main purpose is to give a precise relation between the metastable time scales in the problem to t he properties of the rate functions of the corresponding Gibbs measures. We derive the analog of the Wentzell-Freidlin theory in this case, showing that any transition can be decomposed, with probability exponentially close to one, into a deterministic sequence of ``admissible transitions. For these admissible transitions we give upper and lower bounds on the expected transition times that differ only by a constant. The distribution rescaled transition times are shown to converge to the exponential distribution. We exemplify our results in the context of the random field Curie-Weiss model.
Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report o n the observation of anomalous relaxation dynamics in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared in a superposition of two-different Rydberg states. The total magnetization is found to exhibit sub-exponential relaxation analogous to classical glassy dynamics, but in the quantum case this relaxation originates from the build-up of non-classical correlations. In both experiment and semi-classical simulations, we find the evolution towards a randomized state is independent of the strength of disorder up to a critical value. This hints towards a unifying description of relaxation dynamics in disordered isolated quantum systems, analogous to the generalization of statistical mechanics to out-of-equilibrium scenarios in classical spin glasses.
183 - Philipp Hauke , Markus Heyl 2014
Ergodicity in quantum many-body systems is - despite its fundamental importance - still an open problem. Many-body localization provides a general framework for quantum ergodicity, and may therefore offer important insights. However, the characteriza tion of many-body localization through simple observables is a difficult task. In this article, we introduce a measure for distances in Hilbert space for spin-1/2 systems that can be interpreted as a generalization of the Anderson localization length to the many-body Hilbert space. We show that this many-body localization length is equivalent to a simple local observable in real space, which can be measured in experiments of superconducting qubits, polar molecules, Rydberg atoms, and trapped ions. Using the many-body localization length and a necessary criterion for ergodicity that it provides, we study many-body localization and quantum ergodicity in power-law-interacting Ising models subject to disorder in the transverse field. Based on the nonequilibrium dynamical renormalization group, numerically exact diagonalization, and an analysis of the statistics of resonances we find a many-body localized phase at infinite temperature for small power-law exponents. Within the applicability of these methods, we find no indications of a delocalization transition.
Entanglement is a physical resource of a quantum system just like mass, charge or energy. Moreover it is an essential tool for many purposes of nowadays quantum information processing, e.g. quantum teleportation, quantum cryptography or quantum compu tation. In this work we investigate an extended system of N qubits. In our system a qubit is the absence or presence of an electron at a site of a tight-binding system. Several measures of entanglement between a given qubit and the rest of the system and also the entanglement between two qubits and the rest of the system is calculated in a one-electron picture in the presence of disorder. We invoke the power law band random matrix model which even in one dimension is able to produce multifractal states that fluctuate at all length scales. The concurrence, the tangle and the entanglement entropy all show interesting scaling properties.
We study the disordered Heisenberg spin chain, which exhibits many body localization at strong disorder, in the weak to moderate disorder regime. A continued fraction calculation of dynamical correlations is devised, using a variational extrapolation of recurrents. Good convergence for the infinite chain limit is shown. We find that the local spin correlations decay at long times as $C sim t^{-beta}$, while the conductivity exhibits a low frequency power law $sigma sim omega^{alpha}$. The exponents depict sub-diffusive behavior $ beta < 1/2, alpha> 0 $ at all finite disorders, and convergence to the scaling result, $alpha+2beta = 1$, at large disorders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا