ﻻ يوجد ملخص باللغة العربية
We study the problem of initial conditions for slow-roll inflation along a plateau-like scalar potential within the framework of fluctuation-dissipation dynamics. We consider, in particular, that inflation was preceded by a radiation-dominated epoch where the inflaton is coupled to light degrees of freedom and may reach a near-equilibrium state. We show that the homogeneous field component can be sufficiently localized at the origin to trigger a period of slow-roll if the interactions between the inflaton and the thermal degrees of freedom are sufficiently strong and argue that this does not necessarily spoil the flatness of the potential at the quantum level. We further conclude that the inflaton can still be held at the origin after its potential begins to dominate the energy balance, leading to a period of thermal inflation. This then suppresses the effects of nonlinear interactions between the homogeneous and inhomogeneous field modes that could prevent the former from entering a slow-roll regime. Finally, we discuss the possibility of an early period of chaotic inflation, at large field values, followed by a first stage of reheating and subsequently by a second inflationary epoch along the plateau about the origin. This scenario could prevent an early overclosure of the Universe, at the same time yielding a low tensor-to-scalar ratio in agreement with observations.
We study initial conditions for inflation in scenarios where the inflaton potential has a plateau shape. Such models are those most favored by Planck data and can be obtained in a large number of model classes. As a representative example, we conside
We use the 3+1 formalism of numerical relativity to investigate the robustness of Starobinsky and Higgs inflation to inhomogeneous initial conditions, in the form of either field gradient or kinetic energy density. Sub-Hubble and Hubble-sized fluctua
The effects of bulk viscosity are examined for inflationary dynamics in which dissipation and thermalization are present. A complete stability analysis is done for the background inflaton evolution equations, which includes both inflaton dissipation
Cosmological datasets have great potential to elucidate the nature of dark energy and test gravity on the largest scales available to observation. Theoretical predictions can be computed with hi_class (www.hiclass-code.net), an accurate, fast and fle
In the standard big bang model the universe starts in a radiation dominated era, where the gravitational perturbations are described by second order differential equations, which will generally have two orthogonal set of solutions. One is the so call