ﻻ يوجد ملخص باللغة العربية
In this study, we consider the three dimensional $alpha$-fractional nonlinear delay differential system of the form begin{eqnarray*} D^{alpha}left(u(t)right)&=&p(t)gleft(v(sigma(t))right), D^{alpha}left(v(t)right)&=&-q(t)hleft(w(t))right), D^{alpha}left(w(t)right)&=& r(t)fleft(u(tau(t))right),~ t geq t_0, end{eqnarray*} where $0 < alpha leq 1$, $D^{alpha}$ denotes the Katugampola fractional derivative of order $alpha$. We have established some new oscillation criteria of solutions of differential system by using generalized Riccati transformation and inequality technique. The obtained results are illustrated with suitable examples.
In this paper, we give a direct method to study the isochronous centers on center manifolds of three dimensional polynomial differential systems. Firstly, the isochronous constants of the three dimensional system are defined and its recursive formula
This manuscript investigates the existence and uniqueness of solutions to the first order fractional anti-periodic boundary value problem involving Caputo-Katugampola (CK) derivative. A variety of tools for analysis this paper through the integral eq
Under a mild Lipschitz condition we prove a theorem on the existence and uniqueness of global solutions to delay fractional differential equations. Then, we establish a result on the exponential boundedness for these solutions.
In this paper, we give a criterion on instability of an equilibrium of nonlinear Caputo fractional differential systems. More precisely, we prove that if the spectrum of the linearization has at least one eigenvalue in the sector $$left{lambdainCsetm
We give a necessary and sufficient condition for a system of linear inhomogeneous fractional differential equations to have at least one bounded solution. We also obtain an explicit description for the set of all bounded (or decay) solutions for these systems.