ﻻ يوجد ملخص باللغة العربية
This manuscript investigates the existence and uniqueness of solutions to the first order fractional anti-periodic boundary value problem involving Caputo-Katugampola (CK) derivative. A variety of tools for analysis this paper through the integral equivalent equation of the given problem, fixed point theorems of Leray--Schauder, Krasnoselskiis, and Banach are used. Examples of the obtained results are also presented.
Using a temporally weighted norm we first establish a result on the global existence and uniqueness of solutions for Caputo fractional stochastic differential equations of order $alphain(frac{1}{2},1)$ whose coefficients satisfy a standard Lipschitz
It is shown that the attractor of an autonomous Caputo fractional differential equation of order $alphain(0,1)$ in $mathbb{R}^d$ whose vector field has a certain triangular structure and satisfies a smooth condition and dissipativity condition is ess
An autonomous Caputo fractional differential equation of order $alphain(0,1)$ in $mathbb{R}^d$ whose vector field satisfies a global Lipschitz condition is shown to generate a semi-dynamical system in the function space $mathfrak{C}$ of continuous fu
We show how to reduce the problem of solving members of a certain family of nonlinear differential equations to that of solving some corresponding linear differential equations.
Recently, fractional differential equations have been investigated via the famous variational iteration method. However, all the previous works avoid the term of fractional derivative and handle them as a restricted variation. In order to overcome su