ﻻ يوجد ملخص باللغة العربية
In this paper, we give a criterion on instability of an equilibrium of nonlinear Caputo fractional differential systems. More precisely, we prove that if the spectrum of the linearization has at least one eigenvalue in the sector $$left{lambdainCsetminus{0}:|arg{(lambda)}|<frac{alpha pi}{2}right},$$ where $alphain (0,1)$ is the order of the fractional differential systems, then the equilibrium of the nonlinear systems is unstable.
We give a necessary and sufficient condition for a system of linear inhomogeneous fractional differential equations to have at least one bounded solution. We also obtain an explicit description for the set of all bounded (or decay) solutions for these systems.
We investigate local fractional nonlinear Riccati differential equations (LFNRDE) by transforming them into local fractional linear ordinary differential equations. The case of LFNRDE with constant coefficients is considered and non-differentiable solutions for special cases obtained.
An autonomous Caputo fractional differential equation of order $alphain(0,1)$ in $mathbb{R}^d$ whose vector field satisfies a global Lipschitz condition is shown to generate a semi-dynamical system in the function space $mathfrak{C}$ of continuous fu
In this study, we consider the three dimensional $alpha$-fractional nonlinear delay differential system of the form begin{eqnarray*} D^{alpha}left(u(t)right)&=&p(t)gleft(v(sigma(t))right), D^{alpha}left(v(t)right)&=&-q(t)hleft(w(t))right), D^{alp
The principal aim of this article is to establish an iteration method on the space of resurgent functions. We discuss endless continuability of iterated convolution products of resurgent functions and derive their estimates developing the method in a