ﻻ يوجد ملخص باللغة العربية
An equivalence of matrices via semi-tensor product (STP) is proposed. Using this equivalence, the quotient space is obtained. Parallel and sequential arrangements of the natural projection on different shapes of matrices leads to the product topology and quotient topology respectively. Then the Frobenious inner product of matrices is extended to equivalence classes, which produces a metric on the quotient space. This metric leads to a metric topology. A comparison for these three topologies is presented. Some topological properties are revealed.
The importance of the Hurwitz Metzler matrices and the Hurwitz symmetric matrices can be appreciated in different applications: communication networks, biology and economics are some of them. In this paper, we use an approach of differential topology
We present a novel tractable generative model that extends Sum-Product Networks (SPNs) and significantly boosts their power. We call it Sum-Product-Quotient Networks (SPQNs), whose core concept is to incorporate conditional distributions into the mod
The semi-tensor product (STP) of matrices which was proposed by Daizhan Cheng in 2001 [2], is a natural generalization of the standard matrix product and well defined at every two finite-dimensional matrices. In 2016, Cheng proposed a new concept of
We study a bilinear multiplication rule on 2x2 matrices which is intermediate between the ordinary matrix product and the Hadamard matrix product, and we relate this to the hyperbolic motion group of the plane.
In this paper we examine a symmetric tensor decomposition problem, the Gramian decomposition, posed as a rank minimization problem. We study the relaxation of the problem and consider cases when the relaxed solution is a solution to the original prob