ﻻ يوجد ملخص باللغة العربية
The importance of the Hurwitz Metzler matrices and the Hurwitz symmetric matrices can be appreciated in different applications: communication networks, biology and economics are some of them. In this paper, we use an approach of differential topology for studying such matrices. Our results are as follows: the space of the $ntimes n$ Hurwitz symmetric matrices has a product manifold structure given by the space of the $(n-1) times (n-1)$ Hurwitz symmetric matrices and the euclidean space. Additionally we study the space of Hurwitz Metzler matrices and these ideas let us do an analysis of robustness of Hurwitz Metzler matrices. In particular, we study the Insulin Model as application.
An equivalence of matrices via semi-tensor product (STP) is proposed. Using this equivalence, the quotient space is obtained. Parallel and sequential arrangements of the natural projection on different shapes of matrices leads to the product topology
Hegyvari and Hennecart showed that if $B$ is a sufficiently large brick of a Heisenberg group, then the product set $Bcdot B$ contains many cosets of the center of the group. We give a new, robust proof of this theorem that extends to all extra speci
The semi-tensor product (STP) of matrices which was proposed by Daizhan Cheng in 2001 [2], is a natural generalization of the standard matrix product and well defined at every two finite-dimensional matrices. In 2016, Cheng proposed a new concept of
We study a bilinear multiplication rule on 2x2 matrices which is intermediate between the ordinary matrix product and the Hadamard matrix product, and we relate this to the hyperbolic motion group of the plane.
In this paper, we give strong lower bounds on the size of the sets of products of matrices in some certain groups. More precisely, we prove an analogue of a result due to Chapman and Iosevich for matrices in $SL_2(mathbb{F}_p)$ with restricted entrie