ﻻ يوجد ملخص باللغة العربية
In this paper we examine a symmetric tensor decomposition problem, the Gramian decomposition, posed as a rank minimization problem. We study the relaxation of the problem and consider cases when the relaxed solution is a solution to the original problem. In some instances of tensor rank and order, we prove generically that the solution to the relaxation will be optimal in the original. In other cases, we present interesting examples and approaches that demonstrate the intricacy of this problem.
Given all (finite) moments of two measures $mu$ and $lambda$ on $R^n$, we provide a numerical scheme to obtain the Lebesgue decomposition $mu= u+psi$ with $ ulllambda$ and $psiperplambda$. When$ u$ has a density in $L_infty(lambda)$ then we obtain tw
The tendency of semidefinite programs to compose perfectly under product has been exploited many times in complexity theory: for example, by Lovasz to determine the Shannon capacity of the pentagon; to show a direct sum theorem for non-deterministic
In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. We apply this to get sharp bounds for packing problems, and we use
In this paper, we introduce a set of block factor-width-two matrices, which is a generalisation of factor-width-two matrices and is a subset of positive semidefinite matrices. The set of block factor-width-two matrices is a proper cone and we compute
In this paper, we show that the bundle method can be applied to solve semidefinite programming problems with a low rank solution without ever constructing a full matrix. To accomplish this, we use recent results from randomly sketching matrix optimiz