ﻻ يوجد ملخص باللغة العربية
In previous publications [arXiv:1608.08430, arXiv:1704.06502], the authors have proposed Debye-Huckel-approximate free-energy functionals of the pair distribution functions for one-component fluid and two-component plasmas. These functionals yield the corresponding Debye-Huckel integral equations when they are minimized with respect to the pair distribution functions, lead to correct thermodynamic relations and fulfill the virial theorem. In the present addendum, we update our results by providing simpler functionals that have the same properties. We relate these functionals to the approaches of Lado [Phys. Rev. A 8:2548, 1973] and of Olivares and McQuarrie [J. Chem. Phys. 65:3604, 1976]. We also discuss briefly the non-uniqueness issue that is raised by these results.
The Debye-Huckel approximation to the free-energy of a simple fluid is written as a functional of the pair correlation function. This functional can be seen as the Debye-Huckel equivalent to the functional derived in the hyper-netted chain framework
We present a generalization of the Debye-Huckel free-energy-density functional of simple fluids to the case of two-component systems with arbitrary interaction potentials. It allows one to obtain the two-component Debye-Huckel integral equations thro
Classical density-functional theory provides an efficient alternative to molecular dynamics simulations for understanding the equilibrium properties of inhomogeneous fluids. However, application of density-functional theory to multi-site molecular fl
Electrostatic interactions between point charges embedded into interfaces separating dielectric media are omnipresent in soft matter systems and often control their stability. Such interactions are typically complicated and do not resemble their bulk
Recently developed analytic approximation for the equation of state of fully ionized nonideal electron-ion plasma mixtures [Potekhin et al., Phys. Rev. E, 79, 016411 (2009); arXiv:0812.4344], which covers the transition between the weak and strong Co