ﻻ يوجد ملخص باللغة العربية
Electrostatic interactions between point charges embedded into interfaces separating dielectric media are omnipresent in soft matter systems and often control their stability. Such interactions are typically complicated and do not resemble their bulk counterparts. For instance, the electrostatic potential of a point charge at an air-water interface falls off as $r^{-3}$, where $r$ is the distance from the charge, exhibiting a dipolar behaviour. This behaviour is often assumed to be generic, and is widely referred to when interpreting experimental results. Here we explicitly calculate the in-plane potential of a point charge at an interface between two electrolyte solutions with different dielectric permittivities and Debye screening lengths. We show that the asymptotic behaviour of this potential is neither a dipole, which characterises the potential at air-water interfaces, nor a screened monopole, which describes the bulk behaviour in a single electrolyte solution. By considering the same problem in arbitrary dimensions, we find that the physics behind this difference can be traced to the asymmetric propagation of the interaction in the two media. Our results are relevant, for instance, to understand the physics of charged colloidal particles trapped at oil-water interfaces.
It is well-known that the degeneracy of two-phase microstructures with the same volume fraction and two-point correlation function $S_2(mathbf{r})$ is generally infinite. To elucidate the degeneracy problem explicitly, we examine Debye random media,
We present a generalization of the Debye-Huckel free-energy-density functional of simple fluids to the case of two-component systems with arbitrary interaction potentials. It allows one to obtain the two-component Debye-Huckel integral equations thro
The Debye-Huckel approximation to the free-energy of a simple fluid is written as a functional of the pair correlation function. This functional can be seen as the Debye-Huckel equivalent to the functional derived in the hyper-netted chain framework
We report on two instabilities called viscous fountain and viscous entrainment triggered at the interface between two liquids by the action of bulk flows driven by a laser beam. These streaming flows are due to light scattering losses in turbid liqui
We consider two semi-infinite magnetoelectric media with constant dielectric permittivity separated by a planar interface, whose electromagnetic response is described by non-dynamical axion electrodynamics and investigate the radiation of a point-lik