ﻻ يوجد ملخص باللغة العربية
Recently developed analytic approximation for the equation of state of fully ionized nonideal electron-ion plasma mixtures [Potekhin et al., Phys. Rev. E, 79, 016411 (2009); arXiv:0812.4344], which covers the transition between the weak and strong Coulomb coupling regimes and reproduces numerical results obtained in the hypernetted chain (HNC) approximation, is modified in order to fit the small deviations from the linear mixing in the strong coupling regime, revealed by recent Monte Carlo simulations. In addition, a mixing rule is proposed for the regime of weak coupling, which generalizes post-Debye density corrections to the case of mixtures and numerically agrees with the HNC approximation in that regime.
We develop analytic approximations of thermodynamic functions of fully ionized nonideal electron-ion plasma mixtures. In the regime of strong Coulomb coupling, we use our previously developed analytic approximations for the free energy of one-compone
The equation of state (EOS) for partially ionized carbon, oxygen, and carbon-oxygen mixtures at temperatures 3times10^5 K <~ T <~ 3times10^6 K is calculated over a wide range of densities, using the method of free energy minimization in the framework
The paper presents a theoretical work on the dynamics of Coulomb explosion for spherical nanoplasmas composed by two different ion species. Particular attention has been dedicated to study the energy spectra of the ions with the larger charge-to-mass
We calculate the equation of state of dense hydrogen within the chemical picture. Fluid variational theory is generalized for a multi-component system of molecules, atoms, electrons, and protons. Chemical equilibrium is supposed for the reactions dis
We report a theoretical equation of state (EOS) table for boron across a wide range of temperatures (5.1$times$10$^4$-5.2$times$10$^8$ K) and densities (0.25-49 g/cm$^3$), and experimental shock Hugoniot data at unprecedented high pressures (5608$pm$