ﻻ يوجد ملخص باللغة العربية
Local magneto-optical imaging and global magnetization measurement techniques were used in order to visualize shielding effects in the superconducting core of MgB_2 wires sheathed by ferromagnetic iron (Fe). The magnetic shielding can provide a Meissner-like state in the superconducting core in applied magnetic fields up to ~1T. The maximum shielding fields are shown to correlate with the saturation fields of magnetization in Fe-sheaths. The shielding has been found to facilitate the appearance of an overcritical state, which is capable of achieving a critical current density (J_c) in the core which is larger than J_c in the same wire without the sheath by a factor of ~2. Other effects caused by the magnetic interaction between the sheath and the superconducting core are discussed.
Interaction between the superconductor and ferromagnet in MgB2/Fe wires results in either a plateau or a peak effect in the field dependence of transport critical current, Ic(H). This is in addition to magnetic shielding of external field. Current th
$MgB_2$ becomes superconducting just below 40 K. Whereas porous polycrystalline samples of $MgB_2$ can be synthesized from boron powders, in this letter we demonstrate that dense wires of $MgB_2$ can be prepared by exposing boron filaments to $Mg$ va
We have fabricated a series of iron-sheathed superconducting wires prepared by the powder-in-tube technique from (MgB_2)_{1-x}:(Mg+2B)_x initial powder mixtures taken with different proportions, so that x varies from 0 to 1. It turned out that ex-sit
Magnetic measurements carried out on MgB_2 superconducting round wires have shown that the critical current density J_c(B_a) in wires sheathed by iron can be significantly higher than that in the same bare (unsheathed) wires over a wide applied magne
In many unconventional superconductors, the pairing of electrons is driven by the repulsive interaction, which leads to the sign reversal of superconducting gaps along the Fermi surfaces (FS) or between them. However, to measure this sign change is n