ﻻ يوجد ملخص باللغة العربية
This article deals with the weak errors for averaging principle for a stochastic wave equation in a bounded interval $[0,L]$, perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. Under suitable conditions, it is proved that the rate of weak convergence to the averaged effective dynamics is of order $1$ via an asymptotic expansion approach.
This work is devoted to averaging principle of a two-time-scale stochastic partial differential equation on a bounded interval $[0, l]$, where both the fast and slow components are directly perturbed by additive noises. Under some regular conditions
This paper is devoted to proving the strong averaging principle for slow-fast stochastic partial differential equations with locally monotone coefficients, where the slow component is a stochastic partial differential equations with locally monotone
By using the technique of the Zvonkins transformation and the classical Khasminkiis time discretization method, we prove the averaging principle for slow-fast stochastic partial differential equations with bounded and H{o}lder continuous drift coeffi
The averaging principle is established for the slow component and the fast component being two dimensional stochastic Navier-Stokes equations and stochastic reaction-diffusion equations, respectively. The classical Khasminskii approach based on time
In this paper, we aim to study the asymptotic behaviour for a class of McKean-Vlasov stochastic partial differential equations with slow and fast time-scales. Using the variational approach and classical Khasminskii time discretization, we show that