ﻻ يوجد ملخص باللغة العربية
The Internet of Things (IoT) is becoming an indispensable part of everyday life, enabling a variety of emerging services and applications. However, the presence of rogue IoT devices has exposed the IoT to untold risks with severe consequences. The first step in securing the IoT is detecting rogue IoT devices and identifying legitimate ones. Conventional approaches use cryptographic mechanisms to authenticate and verify legitimate devices identities. However, cryptographic protocols are not available in many systems. Meanwhile, these methods are less effective when legitimate devices can be exploited or encryption keys are disclosed. Therefore, non-cryptographic IoT device identification and rogue device detection become efficient solutions to secure existing systems and will provide additional protection to systems with cryptographic protocols. Non-cryptographic approaches require more effort and are not yet adequately investigated. In this paper, we provide a comprehensive survey on machine learning technologies for the identification of IoT devices along with the detection of compromised or falsified ones from the viewpoint of passive surveillance agents or network operators. We classify the IoT device identification and detection into four categories: device-specific pattern recognition, Deep Learning enabled device identification, unsupervised device identification, and abnormal device detection. Meanwhile, we discuss various ML-related enabling technologies for this purpose. These enabling technologies include learning algorithms, feature engineering on network traffic traces and wireless signals, continual learning, and abnormality detection.
Internet of Things (IoT) based applications face an increasing number of potential security risks, which need to be systematically assessed and addressed. Expert-based manual assessment of IoT security is a predominant approach, which is usually inef
As technology becomes more widely available, millions of users worldwide have installed some form of smart device in their homes or workplaces. These devices are often off-the-shelf commodity systems, such as Google Home or Samsung SmartThings, that
Federated learning (FL) brings collaborative intelligence into industries without centralized training data to accelerate the process of Industry 4.0 on the edge computing level. FL solves the dilemma in which enterprises wish to make the use of data
Key generation is a promising technique to bootstrap secure communications for the Internet of Things (IoT) devices that have no prior knowledge between each other. In the past few years, a variety of key generation protocols and systems have been pr
This work is the first attempt to evaluate and compare felderated learning (FL) and split neural networks (SplitNN) in real-world IoT settings in terms of learning performance and device implementation overhead. We consider a variety of datasets, dif