ﻻ يوجد ملخص باللغة العربية
Entanglement generation in discrete time quantum walks is deemed to be another key property beyond the transport behaviors. The latter has been widely used in investigating the localization or topology in quantum walks. However, there are few experiments involving the former for the challenges in full reconstruction of the final wave function. Here, we report an experiment demonstrating the enhancement of the entanglement in quantum walks using dynamic disorder. Through reconstructing the local spinor state for each site, von Neumann entropy can be obtained and used to quantify the coin-position entanglement. We find that the enhanced entanglement in the dynamically disordered quantum walks is independent of the initial state, which is different from the entanglement generation in the Hadamard quantum walks. Our results are inspirational for achieving quantum computing based on quantum walks.
The time evolution of one- and two-dimensional discrete-time quantum walk with increase in disorder is studied. We use spatial, temporal and spatio-temporal broken periodicity of the unitary evolution as disorder to mimic the effect of disordered/ran
The phenomenon of localization usually happens due to the existence of disorder in a medium. Nevertheless, certain quantum systems allow dynamical localization solely due to the nature of internal interactions. We study a discrete time quantum walker
The dimensionality of the internal coin space of discrete-time quantum walks has a strong impact on the complexity and richness of the dynamics of quantum walkers. While two-dimensional coin operators are sufficient to define a certain range of dynam
Quantum anomalies lead to finite expectation values that defy the apparent symmetries of a system. These anomalies are at the heart of topological effects in fundamental, electronic, photonic and ultracold atomic systems, where they result in a uniqu
Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has re