ﻻ يوجد ملخص باللغة العربية
The phenomenon of localization usually happens due to the existence of disorder in a medium. Nevertheless, certain quantum systems allow dynamical localization solely due to the nature of internal interactions. We study a discrete time quantum walker which exhibits disorder free localization. The quantum walker moves on a one-dimensional lattice and interacts with on-site spins by coherently rotating them around a given axis at each step. Since the spins do not have dynamics of their own, the system poses the local spin components along the rotation axis as an extensive number of conserved moments. When the interaction is weak, the spread of the walker shows subdiffusive behaviour having downscaled ballistic tails in the evolving probability distribution at intermediate time scales. However, as the interaction gets stronger the walker gets exponentially localized in the complete absence of disorder in both lattice and initial state. Using a matrix-product-state ansatz, we investigate the relaxation and entanglement dynamics of the on-site spins due to their coupling with the quantum walker. Surprisingly, we find that even in the delocalized regime, entanglement growth and relaxation occur slowly unlike marjority of the other models displaying a localization transition.
The time evolution of one- and two-dimensional discrete-time quantum walk with increase in disorder is studied. We use spatial, temporal and spatio-temporal broken periodicity of the unitary evolution as disorder to mimic the effect of disordered/ran
We investigate the impact of decoherence and static disorder on the dynamics of quantum particles moving in a periodic lattice. Our experiment relies on the photonic implementation of a one-dimensional quantum walk. The pure quantum evolution is char
Quantum walks have been shown to have impressive transport properties compared to classical random walks. However, imperfections in the quantum walk algorithm can destroy any quantum mechanical speed-up due to Anderson localization. We numerically st
Motivated by recent progress of quantum technologies, we study a discretized quantum adiabatic process for a one-dimensional free fermion system described by a variational wave function, i.e., a parametrized quantum circuit. The wave function is comp
We enquire into the quasi-many-body localization in topologically ordered states of matter, revolving around the case of Kitaev toric code on ladder geometry, where different types of anyonic defects carry different masses induced by environmental er