ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic realization of collective measurements via photonic quantum walks

96   0   0.0 ( 0 )
 نشر من قبل Zhibo Hou
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has remained a challenging task to demonstrate the advantage of collective measurements in experiments. Here we introduce a general recipe for performing deterministic collective measurements on two identically prepared qubits based on quantum walks. Using photonic quantum walks, we realize experimentally an optimized collective measurement with fidelity 0.9946 without post selection. As an application, we achieve the highest tomographic efficiency in qubit state tomography to date. Our work offers an effective recipe for beating the precision limit of local measurements in quantum state tomography and metrology. In addition, our study opens an avenue for harvesting the power of collective measurements in quantum information processing and for exploring the intriguing physics behind this power.



قيم البحث

اقرأ أيضاً

Relativity theory severely restricts the ability to perform nonlocal measurements in quantum mechanics. Studying such nonlocal schemes may thus reveal insights regarding the relations between these two fundamental theories. Therefore, for the last se veral decades, nonlocal measurements have stimulated considerable interest. However, the experimental implementation of nonlocal measurements imposes profound restrictions due to the fact that the interaction Hamiltonian cannot contain, in general, nonlocal observables such as the product of local observables belonging to different particles at spacelike-separated regions. In this work, we experimentally realize a scheme for nonlocal measurements with the aid of probabilistic quantum erasure. We apply this scheme to the tasks of performing high accuracy nonlocal measurements of the parity, as well as measurements in the Bell basis, which do not necessitate classical communication between the parties. Unlike other techniques, the nonlocal measurement outcomes are available locally (upon successful postselection). The state reconstructed via performing quantum tomography on the system after the nonlocal measurement indicates the success of the scheme in retrieving nonlocal information while erasing any local data previously acquired by the parties. This measurement scheme allows realizing any controlled-controlled-gate with any coupling strength. Hence our results are expected to have conceptual and practical applications to quantum communication and quantum computation.
We describe a physical implementation of a quantum finite automaton recognizing a well known family of periodic languages. The realization exploits the polarization degree of freedom of single photons and their manipulation through linear optical ele ments. We use techniques of confidence amplification to reduce the acceptance error probability of the automaton. It is worth remarking that the quantum finite automaton we physically realize is not only interesting per se, but it turns out to be a crucial building block in many quantum finite automaton design frameworks theoretically settled in the literature.
Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.
The dimensionality of the internal coin space of discrete-time quantum walks has a strong impact on the complexity and richness of the dynamics of quantum walkers. While two-dimensional coin operators are sufficient to define a certain range of dynam ics on complex graphs, higher dimensional coins are necessary to unleash the full potential of discrete-time quantum walks. In this work we present an experimental realization of a discrete-time quantum walk on a line graph that, instead of two-dimensional, exhibits a four-dimensional coin space. Making use of the extra degree of freedom we observe multiple ballistic propagation speeds specific to higher dimensional coin operators. By implementing a scalable technique, we demonstrate quantum walks on circles of various sizes, as well as on an example of a Husimi cactus graph. The quantum walks are realized via time-multiplexing in a Michelson interferometer loop architecture, employing as the coin degrees of freedom the polarization and the traveling direction of the pulses in the loop. Our theoretical analysis shows that the platform supports implementations of quantum walks with arbitrary $4 times 4$ unitary coin operations, and usual quantum walks on a line with various periodic and twisted boundary conditions.
Transport phenomena play a crucial role in modern physics and applied sciences. Examples include the dissipation of energy across a large system, the distribution of quantum information in optical networks, and the timely modeling of spreading diseas es. In this work, we experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena, exhibiting a sublinear spreading in space over time. Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker, enabled by the unique flexibility of our setup. This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا