ﻻ يوجد ملخص باللغة العربية
We present a large-scale Bayesian inference framework to constrain cosmological parameters using galaxy redshift surveys, via an application of the Alcock-Paczynski (AP) test. Our physical model of the non-linearly evolved density field, as probed by galaxy surveys, employs Lagrangian perturbation theory (LPT) to connect Gaussian initial conditions to the final density field, followed by a coordinate transformation to obtain the redshift space representation for comparison with data. We generate realizations of primordial and present-day matter fluctuations given a set of observations. This hierarchical approach encodes a novel AP test, extracting several orders of magnitude more information from the cosmological expansion compared to classical approaches, to infer cosmological parameters and jointly reconstruct the underlying 3D dark matter density field. The novelty of this AP test lies in constraining the comoving-redshift transformation to infer the appropriate cosmology which yields isotropic correlations of the galaxy density field, with the underlying assumption relying purely on the cosmological principle. Such an AP test does not rely explicitly on modelling the full statistics of the field. We verify in depth via simulations that this renders our test robust to model misspecification. This leads to another crucial advantage, namely that the cosmological parameters exhibit extremely weak dependence on the currently unresolved phenomenon of galaxy bias, thereby circumventing a potentially key limitation. This is consequently among the first methods to extract a large fraction of information from statistics other than that of direct density contrast correlations, without being sensitive to the amplitude of density fluctuations. We perform several statistical efficiency and consistency tests on a mock galaxy catalogue, using the SDSS-III survey as template.
Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from
We present $it{CosmoPower}$, a suite of neural cosmological power spectrum emulators providing orders-of-magnitude acceleration for parameter estimation from two-point statistics analyses of Large-Scale Structure (LSS) and Cosmic Microwave Background
We present a deep machine learning (ML)-based technique for accurately determining $sigma_8$ and $Omega_m$ from mock 3D galaxy surveys. The mock surveys are built from the AbacusCosmos suite of $N$-body simulations, which comprises 40 cosmological vo
Analyzes of next-generation galaxy data require accurate treatment of systematic effects such as the bias between observed galaxies and the underlying matter density field. However, proposed models of the phenomenon are either numerically expensive o
Photometric galaxy surveys constitute a powerful cosmological probe but rely on the accurate characterization of their redshift distributions using only broadband imaging, and can be very sensitive to incomplete or biased priors used for redshift cal