ﻻ يوجد ملخص باللغة العربية
Analyzes of next-generation galaxy data require accurate treatment of systematic effects such as the bias between observed galaxies and the underlying matter density field. However, proposed models of the phenomenon are either numerically expensive or too inaccurate to achieve unbiased inferences of cosmological parameters even at mildly-nonlinear scales of the data. As an alternative to constructing accurate galaxy bias models, requiring understanding galaxy formation, we propose to construct likelihood distributions for Bayesian forward modeling approaches that are insensitive to linear, scale-dependent bias and provide robustness against model misspecification. We use maximum entropy arguments to construct likelihood distributions designed to account only for correlations between data and inferred quantities. By design these correlations are insensitive to linear galaxy biasing relations, providing the desired robustness. The method is implemented and tested within a Markov Chain Monte Carlo approach. The method is assessed using a halo mock catalog based on standard full, cosmological, N-body simulations. We obtain unbiased and tight constraints on cosmological parameters exploiting only linear cross-correlation rates for $kle 0.10$ Mpc/h. Tests for halos of masses ~10$^{12}$ M$_odot$ to ~10$^{13}$ M$_odot$ indicate that it is possible to ignore all details of the linear, scale dependent, bias function while obtaining robust constraints on cosmology. Our results provide a promising path forward to analyzes of galaxy surveys without the requirement of having to accurately model the details of galaxy biasing but by designing robust likelihoods for the inference.
We present a large-scale Bayesian inference framework to constrain cosmological parameters using galaxy redshift surveys, via an application of the Alcock-Paczynski (AP) test. Our physical model of the non-linearly evolved density field, as probed by
We present $it{CosmoPower}$, a suite of neural cosmological power spectrum emulators providing orders-of-magnitude acceleration for parameter estimation from two-point statistics analyses of Large-Scale Structure (LSS) and Cosmic Microwave Background
We present a comparison of simulation-based inference to full, field-based analytical inference in cosmological data analysis. To do so, we explore parameter inference for two cases where the information content is calculable analytically: Gaussian r
We demonstrate a measure for the effective number of parameters constrained by a posterior distribution in the context of cosmology. In the same way that the mean of the Shannon information (i.e. the Kullback-Leibler divergence) provides a measure of
We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect halos of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesia